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ABSTRACT
It is argued that the correct physical treatment of self–energy in Newtonian quantum

gravity offers a constrained and predictive discriminator for the interpretation of ψ, and
thus a clear point of departure for the unification of modern physics.

1. Introduction

Among all, two views on quantum physics have the merit of simplicity. Heisenberg

believed that operator non–commutativity was the key, and that the seat of all

reality lay with the observer1. Schrödinger believed that complex–valued fields

distinguished the quantum from the classical, and that the task of physics should

be to explain the observed stochasticity of nature in these terms alone2,3,4,5.

However, at the time, none could say who was right. Thus both views have

merged into one indistinguishable blend of the merits in each. In the Copenhagen

interpretation1,6,7 we adopt the stance of Heisenberg upon the observer1, and the

physical tool of Schrödinger in the wavefunction2. Operators and wavefunctions

are treated upon equal footing3. To meld both, in seamless fashion, Dirac has

abstracted away those obvious points of difference. In his transformation theory6

there is no possibility of empirical discrimination — by definition.

Is that really the case? Indeed, within the confines of the present linear theory it

would appear so. However, nature may well find disfavour with the commandments

of our theorizing about her. Suppose she prefers to be nonlinear8,9,10,11,14,15,16.

How are we to tell? Can the ultimate philosophical question be made physical10?

My thesis here is that the treatment of gravitational self–energy offers a means

to discriminate the issue of how ψ should be interpreted. According to the views

of Heisenberg we should attempt the construction of a second–quantized theory of

gravity, which must have a first–quantized linear wave–equation as its Newtonian

limit. In contrast, the historical problem of macroscopic dispersion, for which the

Copenhagen observer is traditionally invoked, is here met via a nonlinear treatment

of gravitational self–energy appropriate to the Schrödinger interpretation2. Thus

we identify two possible Newtonian theories of quantum gravity, which implies two

entire classes of relativistic theory, here distinguished via their limits.
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2 Gravitational self–energy as the litmus of reality

2. The incompleteness of Copenhagen quantum physics

The logical self–consistency of quantum physics has long rested upon an unproven

assumption. According to Bohr7, a physical domain exists that is “describable in

classical terms”. That is in accord with commonsense — but does our theory allow

for its construction? The key issue is whether quantum theory exhibits a classical

level that is contained within it, and consistent with its own principles11,14,15.

Recently, Jones15 has demonstrated that the recovery of an exact classical limit

is inconsistent with the uncertainty principle and must be rejected. Further, a key

property assumed in many contemporary treatments of measurement, namely the

existence of non–entangling environmental noise18, is inconsistent with the quantum

entanglement of a linear theory4, although nonlinear theories permit it15.

We believe this signals a genuine problem of logical incompleteness. To overcome

it we seek a fundamental, physically motivated, and predictive interaction that is

nonlinear, and thus non–entangling15. This we seek to invoke in the participatory

but separated role of the traditional Copenhagen observer1,6,7.

3. The problem of the cosmic observer

Consider a free particle. Dispersion spreads the wave–packet5. Already, for the

simple problem of a universe containing only one particle we require something to

arrest this process. In Copenhagen physics an observer finds the particle here or

there7. The result is localization within the volume of space represented by the

accuracy of his measuring device, with the final ψ assigned upon this basis1.

This process iterates. Should the observer become part of quantum physics,

he too is found dispersed — and worse, he is entangled4. A new meta–observer

must take his place to do this finding. How are we to avoid this fiendish regress

of observers observing17? Each must sit in the waiting–room of reality until he

the non–existent last — he called Godot — arrives. If we are not to conjure a

cosmic observera we must find some physics in place of them. Decoherence is very

promising18, but there is not yet a clear physical mechanism to act upon the remnant

diagonal terms in a density matrix and so reduce them. With a non–entangling

field15 these might be cross–coupled, in noisy fashion, to single out one of them.

If we are to do away with observers, then we must replace them with a physics

of observation. The strongest demand possible is that the one–particle theory be

free of an observer. Then self–consistency will not require complexity, although

new effects may arise once more particles are included. Fix, therefore, upon the

free particle. Look to banish the observer at this the simplest possible level, and to

do so without cost of entanglement4. The problem is then physical; it is dispersion.

aHeisenberg has summed up, perhaps obliquely, the cosmical conundrum posed by observers in
the following line: “The chain of cause and effect could be quantitatively verified only if the
whole universe were considered as a single system — but then physics has vanished, and only a
mathematical scheme remains.” (consult Ref. 1, p.58). Our aim is to ensure that physics does
not so vanish in a quantum theory of cosmic scope, while ensuring, with Einstein (see the article
by Pais, Ref. 13, p.899), that God is not rendered a gambler in the human imagination. I find the
corollary, God the observer , to be an embarassing adjunct to physics, and prefer to avoid it.
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4. Towards the unification of micro and macro physics

To locate a predictive theory we must confine attention to the known interactions.

Certain of these, particularly electromagnetism, are very well–tested and known

to introduce quantum correlations. Holding fast to simplicity many options are

discounted. To acquire agreement with experiment any change must necessarily be

small for an isolated subatomic particle19. Dispersion is well–tested in the quantum

physics of these20. However, it drops rapidly in strength as we pass up towards

the many–particle domain of quasi–classical physics. Stimulated by the previous

speculations of Kibble9, Rosen11 and Penrose12, we consider the novel hypotheis

of an emergent many–body nonlinearity , whose effective strength depends upon the

physical context. Then the successes of microphysics are open to recovery, while the

macrophysics is subtly altered. Thus we suppose that the superposition principle is

properly a few–particle idealization, a quantum micro–limit , as it were.

To interpret the theory we must adopt a scenario where observation is treated as

part of physics2, and not philosophy7. The original program of Schrödinger admits

a plausible interpretation along these lines2, and so we revive it. Hereafter, we

search after a unified theory of micro and macro physics5 that is: 1) General and

inclusive, 2) Predictive, and 3) Self–consistent . To meet the basic requirement of

self–consistency we seek a simple generic solution to the problem of dispersion.

5. The physics of dispersion

Let us seek, therefore, a generic physical mechanism for the non–entangling local-

ization of a single scalar massive neutral particle. As a guide we adopt an idea

of Rosen11, and isolate quantum effects in an extra potential which alters classical

Hamilton–Jacobi theory. Substituting the Ansatz ψ = ρ1/2 exp{iS/h̄} into

ih̄
∂ψ

∂t
=

{
− h̄2

2m
∇2 + V

}
ψ, (1)

where V is a possibly nonlinear potential (i.e., V = V [ψ,ψ∗]), we obtain

∂ρ

∂t
+∇ · (ρv) = 0, (2)

m
dv

dt
+∇(V +Q) = 0, (3)

∂S

∂t
+
∇S · ∇S

2m
+ (V +Q) = 0. (4)

In this picture, v ≡ ∇S/m is viewed as the velocity field of a “fluid”, flowing without

loss according to (2), which expresses conservation of the current j = ρv.

In the same vein, (3) is the hydrodynamic analog of F = mẍ, showing that a

gradient force acts on “fluid elements”. It is the sum of V , the Schrödinger potential,

and an intrinsically nonlinear quantum potential , which reads

Q[ψ,ψ∗] ≡ − h̄2

2m

∇2√ρ
√
ρ

= − h̄2

4m

(
∇2ρ

ρ
− 1

2

(∇ρ)2

ρ2

)
. (5)
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This is positive for lumped states like gaussians, and increases as they become more

localized, but decreases as they become more massive. Only Q is present when V

vanishes, and it is a repulsive potential for a localized state. Thus Q isolates the

physics of dispersion in the fictitious “dispersion force” −∇Q, opposed to −∇V .

Finally, (4) is the usual classical Hamilton–Jacobi equation

∂S

∂t
+H(x,∇S) = 0, (6)

modified by the addition of the term Q to H. In this one–particle scenario the

quantum potential appears as the prime modification to classical physics11.

Since Q and V are additive, but Q depends on ρ, a suitable state may have its

dispersion cancelled by V . Indeed, an eigenstate which solves

∇2ψ +
2m

h̄2 (E − V )ψ = 0 (7)

also satisfies the equilibrium condition E = V + Q, whence ∇Q = −∇V , showing

that the two “gradient forces” are in balance. Thus we might cancel Q, for a free

particle, using an additional potential Vfree[ψ,ψ∗]11. Recall that Schrödinger used

Hamilton–Jacobi theory to find the microscopic equation2. Here we reverse the

historical argument to constrain a physical dispersion–free macroscopic equation.

6. Gravitation and the physics of free particles

The localizing term we seek must be universal, or one is back again to observers.

Since all particles carry mass–energy they are all subject to gravitation. Nor does

the formation of gravitational bound states ever lead to screening of the source term

via the sum of opposite charges. Thus it is omnipresent. Further, Q is a repulsive

potential for those states which are well–localized. A generic force of localization

must then have an attractive potential. Gravitation is thus, and universally so.

If we look now upon Q, it is remarkable that it depends only upon m, and the

localization scale of ρ. In gravitation we find a matching source term behaviour so

that the two may work in concert, in a due exchange of dominancy.

In order to locate a term in this role we must identify a new physical effect that

is excluded from the free–particle wave equation. With an otherwise empty universe

the only candidate is gravitational self–interaction.

Recall that for non–gravitational interactions these are included when the field

and particle are second–quantized. The classical infinities of a point–like source are

banished via covariant cancellation to all orders in a perturbatively renormalizable

gauge field theory. All is accounted for, there is no “missing term” due to these.

However, although classical gravitation is a gauge theory, the pattern of it differs

from the other three forces21. The interesting sector of relativistic quantum gravity

is inherently non–perturbative, and the standard theory is non–renormalizable, and

thus unpredictive17. Given the serious and persistent nature of this problem we will

explore a nonlinear, and non–perturbative treatment of gravitational self–energy

which is already finite, and so does not demand second–quantization.
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7. The Schrödinger treatment of self–energy

To include gravitational self–energy in a non–perturbative manner, and without

recourse to second–quantization, we consider

ρ(x, t) = mψ(x, t)ψ∗(x, t) (8)

as the mass density for our particle. To meet the demand that the self–field be

1/r–like at infinity we adopt the classical Poisson equation

∇2Φgrav(x) = 4πGmρ(x, t), (9)

as its source, and obtain the gravitational self–potential

Φgrav(x) = −Gm
∫
ψ∗(x̃, t)ψ(x̃, t)

|x− x̃|
d3x̃. (10)

Coupling (10) back upon the particle we compute

Egrav = −Gm
2

2

∫ ∫
ψ∗(x̃, t)ψ∗(x, t)ψ(x̃, t)ψ(x, t)

|x− x̃|
d3x̃d3x, (11)

leading to the “mass renormalization” m 7→ m + δm, where δm = Egrav/c
2. For a

wavepacket having linear extension ` this reads

δm

m
≈ −Gm

`c2
,

so that a nucelon with m ≈ 10−27kg, and ` ≈ 10−15m, yields |δm/m| ≈ 10−39,

decreasing as ` increases. Evidently, a direct test of Newtonian quantum gravity

demands either a very high–energy accelerator experiment,b or a highly sensitive

test of the many–body coherent dynamics of very large numbers of atomic–scale

particles in close proximity. Suffice to say, no experiment I am familiar with excludes

the above from consideration, and so it is important to examine it carefully.

8. The formalism of generalized quantum dynamics

To meet the twin requirements of generality and inclusivity we now embed the

above within the larger mathematical system of generalized quantum dynamics due

to Kibble9, and Weinberg10. Introducing the energy functionals

Hkinetic[ψ,ψ∗] =

∫
h̄2

2m
∇ψ∗(x, t) · ∇ψ(x, t) d3x, (12)

Hpotential[ψ,ψ
∗] =

∫
ψ∗(x, t)V (x, t)ψ(x, t) d3x, (13)

bRelativistic quantum gravity is generally associated with Planck scale physics: the Planck length
`P ≡ (h̄G/c3)1/2 ≈ 1.6 × 10−35m; the Planck mass mP ≡ (h̄c/G)1/2 ≈ 2.2 × 10−8kg; and the
Planck time tP ≡ (Gh̄/c5)1/2 ≈ 5.4 × 10−44s. Our proposal is consistent with this view since
δm/m is order unity if m/` = mP/`P = c2/G, whence mΦgrav ≈ mc2. Then a relativistic theory
of quantum gravity is essential, and the orthodox viewpoint on Planck scale physics is recovered.
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whose sum is Htotal[ψ,ψ
∗], and recalling the standard Legendre transformation, the

corresponding non–relativistic Lagrangian functional is deduced from

Htotal[ψ,ψ
∗] =

∫
ih̄ψ∗(x, t)

∂

∂t
ψ(x, t) d3x− L[ψ,ψ∗]. (14)

Application of the dynamical principle of least action

δ

δψ∗(x, t)

∫
L[ψ,ψ∗] dt = 0 (15)

then recovers the standard linear Schrödinger equation, where we have defined the

functional derivatives via14

δnF [ψ(x̃, t̃)]

δnψ(x, t)
≡ dn

dλn
F [ψ(x̃, t̃) + λδ(x− x̃, t− t̃)]

∣∣∣∣
λ=0

, (16)

and similarly for the conjugate operation. To obtain the generalization of this

system of mathematics to include the case of a nonlinear potential V we need only

recognize that complex–valued fields separate into two real fields. As such, the

mathematics of complex–valued nonlinear dynamics is a special case of the usual

real–valued Hamiltonian dynamics familiar in classical studies16.

Using (14), (15) and the definition (16) the generalization is immediate. Thus

we obtain the generalized nonlinear Schrödinger equation

ih̄
∂

∂t
ψ(x, t) =

δH[ψ,ψ∗]

δψ∗(x, t)
, (17)

of Kibble9, and Weinberg10, here expressed in the functional formulation of Jones14.

To meet the requirement of inclusivity we further impose the scaling restriction

H[λψ, ψ∗] = λH[ψ,ψ∗] = H[ψ, λψ∗], (18)

with λ arbitrary, and demand that H[ψ,ψ∗] be real–valued, consistent with its role

as an energy. The condition (18) was first introduced by Kibble9, and Weinberg10,

as a way to meet the previous difficulties of some nonlinear theories in respect of

keeping non–interacting systems separable8. It further enforces the decomposition

H[ψ,ψ∗] =

∫ ∫
ψ∗(x̃, t)

δ2H[ψ,ψ∗]

δψ∗(x̃, t)δψ(x, t)
ψ(x, t) d3x̃d3x, (19)

symptomatic of a theory founded in projective geometry, and complex numbers.

As shown by Jones16 the decomposition of H into generalized expectation values

allows for the recovery of Hilbert space geometry and the operator structure of the

linear theory. These are very special requirements one would expect of a funda-

mental extension to quantum dynamics. Here the usual linear theory will emerge

in the quantum micro–limit of an isolated atomic system, where gravitation can be

neglected and the property of linear superposition is a good approximation.
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9. The one–particle theory

Applying the foregoing to (11), we form the total energy functional

Htotal[ψ,ψ
∗] =

∫
h̄2

2m
∇ψ∗(x, t) · ∇ψ(x, t) d3x

− Gm2

2N [ψ,ψ∗]

∫ ∫
ψ∗(x̃, t)ψ∗(x, t)ψ(x̃, t)ψ(x, t)

|x− x̃|
d3x̃d3x, (20)

here scaled by the norm functional

N [ψ,ψ∗] ≡
∫
ψ∗(x, t)ψ(x, t) d3x, (21)

to respect (18). Applying (17), and using (16), we obtain

ih̄
∂

∂t
ψ(x, t) =

{
− h̄2

2m
∇2 − Gm2

N [ψ,ψ∗]

∫
ψ∗(x̃, t)ψ(x̃, t)

|x− x̃|
d3x̃− Egrav

N [ψ,ψ∗]

}
ψ(x, t),

(22)

as the one–particle gravitational Schrödinger equation.

10. The many–particle theory

Consistent with the preceding non–entangled treatment of gravitation, and to en-

compass both bosonic and fermionic degrees of freedom, we consider

Hgrav[Ψ,Ψ∗] ≡ − 1

N [Ψ,Ψ∗]

∫ ∫
d3nx̃d3nx

1

2

n∑
i,j=1

Gmimj

|xi − x̃j |


Ψ∗(x̃1, . . . , x̃n; t)Ψ∗(x1, . . . ,xn; t)Ψ(x̃1, . . . , x̃n; t)Ψ(x1, . . . ,xn; t). (23)

Equation (17) generalizes to

ih̄
∂

∂t
Ψ(x1, . . . ,xn; t) =

δHtotal[Ψ,Ψ
∗]

δΨ∗(x1, . . . ,xn; t)
, (24)

and we obtain the equation of motion

ih̄
∂

∂t
Ψ(x1, . . . ,xn; t)

=

{
−

n∑
i=1

h̄2

2mi
∇2

xi
+

n∑
i=1

miΦ(xi)−
Egravity

N [Ψ,Ψ∗]

}
Ψ(x1, . . . ,xn; t), (25)

where Φ(x) is a Hartree–Fock22 type many–body potential,

Φ(x) = −
n∑
j=1

Gmj

N [Ψ,Ψ∗]

∫
Ψ∗(x̃1, . . . , x̃n; t)Ψ(x̃1, . . . , x̃n; t)

|x− x̃j |
d3nx̃, (26)

The one–body mass density is the source of Φ, so we interpret Newtonian gravitation

as a non–sentient “observer” of this one distinguished macroscopic observable.
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11. Stationary states of nonlinear dynamics

Weinberg10 has employed the Rayleigh–Ritz variational principle

δ

δψ∗(x, t)

(
H[ψ,ψ∗]

N [ψ,ψ∗]

)
= 0, (27)

to define the canonically invariant16 stationarity condition

δH

δψ∗(x, t)
=

(
H

N

)
ψ(x, t), (28)

where E = H/N , is the total energy in the stationary state. This is equivalent

to making the Ansatz ψ(x, t) = f(x)e−iEtotalt/h̄, in (17), with f(x) real–valued.

Thus Schrödinger’s first conception of quantization2 is here revived as the nonlinear

eigenvalue problem (28), that which most naturally generalizes: Ĥ|ψ〉 = E|ψ〉10,16.

12. Cosmical self–consistency of pure gravitation

To (22) we apply (28) to obtain

∇2f(x) +
2m

h̄2 [ε−mΦgrav(x)] f(x) = 0, (29)

as the eigenvalue equation. The solutions to it have been widely studied in the

theory of boson stars, where (25) is taken as the Hartree–Fock approximation22,23

to the Copenhagen Newtonian quantum gravityc. Here we treat it as fundamental.

Spherically symmetric solutions, i.e. S–wave states, have been computed by

Bonnazola and Ruffini24, Thirring25, Friedberg et al.26, and Membrado et al.27

The physical eigenstates must be normalizable, with limρ→∞ f?(ρ) = 0. To fix

ε = Etotal + Egrav, one employs the virial theorem27, 2Ekinetic = −Egrav, to obtain

ε = 3Etotal. Using (9) we can eliminate Φgrav from (29), whence f solves the novel

4–th order nonlinear equation ∇2(∇2f/f) = (8π/ag)f2, where ag = h̄2/Gm3, the

gravitational Bohr radius, is the key scale parameter. For a nucleon it is around

1022m, and Planck length for a Planck mass elementary particle.

Friedberg et al.26 have exhibited an homologous family of solutions to (29). All

numerical soultions are obtained as rescalings of a universal function. If f?(ρ) and

g?(ρ) ≡ Φ∗(ρ)− ε∗ solve the system ∇2f? = g?f? and ∇2g? = (f?)2, then

f(r) =
21/2

π1/2(γ1)2a
3/2
g

f?
(

2r

γ1ag

)
(30)

Φ(r) =
2

(γ1)2

G2m4

h̄2

{
g?
(

2r

γ1ag

)
+ ε∗

}
(31)

cThe correspondence principle, as formalized by Dirac in his canonical quantization algorithm6,
demands the entangling potential Φ = − 1

2

∑n

i 6=j
Gmimj/|xi − xj |. The Copenhagen theory

of Newtonian quantum gravity thus resembles electromagnetism. Further, this route requires a
perturbatively renormalizable scheme of second–quantized gravity to obtain a finite self–energy.
Since H–F energies are generally larger than the “true” Coulomb energies (see e.g., Lieb and Simon
Ref. 23) the spectra of both theories differ generically. They are empirically distinguishable.
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solve the system ∇2f = (2m/h̄2)gf and ∇2g = 4πGm2f2. Choosing f?(ρ) = 1,

df?/dρ|ρ=0 = 0, g?(0) = γ0, dg?/dρ|ρ=0 = 0, γ0 is fixed by shooting to meet the

requirement limρ→∞ f?(ρ) = 0. Physical solutions occur at discrete values of γ0(n),

with the quantum number n = 0, 1, 2, . . . assigned by node counting, and

γ1(n) ≡
∫ ∞

0

[f?n(ρ)]2ρ2 dρ (32)

ε∗(n) ≡ 3

γ1(n)

∫ ∞
0

[f?n(ρ)]2g?n(ρ)ρ2 dρ. (33)

Universal functions for the ground–state, and self–potential are displayed in Fig. 1

(where: γ0(0) = −0.919, γ1(0) = 3.47, and ε∗(0) = −0.979). Adding more particles

changes the localization scale. From (25) we see that k identical collocated bosons

have a
(k)
g = a

(1)
g /k so that the “size” of an elementary particle depends upon its

context, e.g. for k = 1023 the nucleon size, 1023m, becomes 100m.

Fig. 1. Universal functions for the gravitational ground state and self–potential. Since no external

observer is needed to localize a free–particle the Newton–Schrödinger cosmology is self–consistent.

Although gravitation is weak, it does not screen, and so easily dominates macroscopic dispersion.

Of course, these results are not indicative of ordinary matter, where the effects

of the Pauli exclusion principle, and the atomic and interatomic binding induced

by electromagnetism are decisive23. However, in view of the tight localization that

is achieved already, we anticipate that the entangling electromagnetic interaction

and the dynamic non–entangling gravitational potential will confront one another

to introduce elements of intrinsic instability and stochasticity into macrodynamics.

With Penrose12, we suggest that quantum measurement be viewed as a branch of

physics concerned with the nonlinear instability of bulk matter to the inducement

of a macroscopic superposition when strongly coupled to a microsystem.
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13. Conclusion

The two theories of Newtonian quantum gravity described are each enforced by

the correspondence principle, and the vital demand of interpretational consistency .

They differ quantitatively via the gravitational potential, and qualitatively over

entanglement. Work is in progress upon possible empirical signatures, the problem

of reconciling waves in configuration space with experience2,4, and the extension of

our predictive nonlinear foil into the relativistic domain of quantum field theory.

Acknowledgements

I thank Bruce McKellar and Mark Thomson for helpful discussions on many–body

physics, my colleagues at Queensland, and the Australian Research Council.

References

1. W. Heisenberg, The Physical Principles of the Quantum Theory (Dover, New York,
1949); especially Chap. 4, on the Copenhagen interpretation.

2. E. Schrödinger, Collected Papers on Wave Mechanics (Blackie & Son, London, 1928).
3. E. Schrödinger, Ann. d. Phys. 79 (1926) 734; translation in Ref. 2 pp.45–61.
4. E. Schrödinger, Naturwiss. 23 (1935) 807, 823 and 844.
5. E. Schrödinger, Naturwiss. 28 (1926) 664; translation appears in Ref. 2 pp. 41–44.
6. P.A.M. Dirac, The Principles of Quantum Mechanics 4th edn. (Oxford University

Press, London, 1958); Chap. 3 and Chap. 5, see also Ref. 3.
7. N. Bohr, in Albert Einstein: Philosopher Scientist ed. P.A. Schlipp (Tudor, New York,

1951); particularly the oft–quoted italicised phrase at the bottom of p.209.
8. I. Biàlynicki–Birula and J. Mycielski, Ann. Phys. (N.Y.) 100 (1976) 62.
9. T.W.B. Kibble, Commun. Math. Phys. 64 (1978) 73.

10. S. Weinberg, Ann. Phys. (N.Y.) 194 (1989) 336; and references therein.
11. N. Rosen, Found. Phys. 16 (1986) 687.
12. R. Penrose, in General Relativity and Gravitation ed. R.J. Gleiser, C.N. Kozameh and

O.M. Moreschi (IOP Publishing, Bristol, 1993).
13. A. Pais, Rev. Mod. Phys. 51 (1979) 863.
14. K.R.W. Jones, Phys. Rev. D45 (1992) R2590.
15. K.R.W. Jones, Phys. Rev. A50 (1994) 1062.
16. K.R.W. Jones, Ann. Phys. (N.Y.) 233 (1994) 295.
17. C.J. Isham, in Recent Aspects of Quantum Fields, H. Mitter and H. Gausterer (eds.),

Springer Lecture Notes in Physics 396 (Springer, Berlin, 1992) pp. 123–225.
18. W.H. Zurek, Phys. Rev. D26 (1982) 1862; and references therein.
19. J.J. Bollinger et al., Phys. Rev. Lett. 63 (1989) 1031.
20. R. Gähler, A.G. Kelin and A. Zeilinger, Phys. Rev. A23 (1981) 1611.
21. R. Utiyama, Phys. Rev. 101 (1956) 1597.
22. A. Kerman and S.E. Koonin, Ann. Phys. (N.Y.) 100 (1976) 332.
23. E.H. Lieb and B. Simon, J. Chem. Phys. 61 (1974) 735; E.H. Lieb, Rev. Mod. Phys.

48 (1976) 553; F.J. Dyson, J. Math. Phys. 8 (1967) 1538; and cited articles.
24. R. Ruffini and S. Bonazzola, Phys. Rev. 187 (1969) 1767.
25. W. Thirring, Phys. Lett. 127B (1983) 27.
26. R. Friedberg, T.D. Lee and Y. Pang, Phys. Rev. D35 (1987) 3640.
27. M. Membrado, A.F. Pacheco and Y. Sañudo, Phys. Rev. A39 (1989) 4207.


