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ABSTRACT

Axiomatic formulations for a physical theory are of greatest use when considering the
problem of generalizing its mathematical structures; to find, restrict, or classify any
possible larger theory. Historically, there has been great emphasis upon linear operators,
and non—commuativity, as the fundamental distinguishing feature of quantum theories.
Here I explore the other view, that it is complex numbers that are fundamental, with the
remaining aspects being shown to be accidental consequences of this assumption. The
result is a remarkably simple deduction of Schrédinger dynamics from three postulates.
Hilbert space is a consequence of them.

1. Introduction

In the historical development of quantum theory it is remarkable that the views
of Heisenberg', over what is fundamental, have so totally dominated those of
Schrédinger?.  Our present theory is, in large part, built upon the assumption
that it is operator non—commutativity which distinguishes quantum theories from
classical theories. Must it be so? Is that the only tenable viewpoint?

Of course, Schrodinger believed that the more important feature of quantum
mechanics was its use of complex numbers. He tried, in vain, at an early stage, to
remove them, and found that he could not®. Therefore, while his view is considered
neo—classical nowadays, and therefore something to be despised, Schrodinger would
surely have considered this observation to strike at the essence of the change made
over the preceding ideas. Whereas classical physics employed partial differential
equations—their use of complex numbers was mere artifice. The initial success of
his equation confirmed, Schrodinger was surprised, and rather worried, that complex
numbers appeared essential/ Such a personal experience, his great doubt resolved,
might ezplain his dissenting views about what constitutes a quantum theory*.

From the mathematical viewpoint, non—commutativity is unsurprising. Since
the work of Lie, one knows it will be ubiquitous in the study of systems of equations,
first—order in time, that admit Lie symmetries®. What is special, however, are those
symmetries associated with systems of equations that employ complexr numbers. It
is no trivial matter to construct a complex—valued dynamical system.
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In algebra complex numbers are more general than real numbers; in geometry
they are far more special. To introduce i is to introduce a notion of orthogonal
real and imaginary parts, upon an pair of reals. The mappings, in time, that are
the solutions of a dynamical system, must preserve the complex structure, if not in
absolute degree, then in some sensible mathematical relaxation of it.

This fact is well-known to the mathematicians, in their studies of the differential
geometry, and taxonomy of almost complex manifolds®. To see it in a physical
context, we will exhibit Schrodinger mechanics, and Hilbert space geometry, as a
complex restriction of the mathematics of Hamilton, as used in the classical point
mechanics. It will not be the trail blazed by Schrodinger?; to use analogies with the
classical Hamilton—Jacobi theory. Rather we will deduce the dynamical equations
directly from the classical mathematics and two postulates of restriction”.

The object is to demonstrate that we can just as well take complex numbers as
the basic change. The point is to find a new path to: generalize by restriction. In
a nut—shell, we look for an enclosing formalism for quantum theory, and ask how it
is to be made compatible with the complex numbers.

2. The specialness of bilinear hermitian forms

Expectation values are the basis of quantum predictions, including transition prob-
abilities. Yet these quantities must involve states, and operators, in combination.
Even if we first solved a dynamical problem in the Heisenberg picture, one must
choose a state vector to fully specify a solution. For the familar problem

x 2
w20 Lo v boio, S

as with other non-relativistic examples, we may abstract the equation
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with H an hermitian operator. Choosing a complete set of states |k), we may
expand [©) = ¥ |k), with ¢y = (k|v), so that the expectation value is written

h(, ) = (Y| H|p) = ;Hjpiby, (3)

where Hjj, = <j|ﬁ |k), and the summation convention is implicit. As elegant as the
bra—ket notation of Dirac may be, we could just as well write

L di (v, ¥)

th— = H; = ——"" 4
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and use this as the Schrodinger equation. In this picture it is natural to ask, as
Weinberg has already done®, whether the expectation values of quantum theory
must always be hermitian forms, and, further, whether they must have constant
coefficients H,j. For instance, what of®-19:11:12
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as a possibility. With thoughts patterned linear, one might think this equation

ill-defined, until we recall the Hartree-Fock approximation'3
0 ol e;e; p;(X;
h— t)=14 — e [ %) g 6
i (X1, X ) Z Vi + 2 2w e ©)

with p;(x;) the integrated one—particle density.

My point is; even in the linear theory we are often using nonlinear equations
formulated on complex fields. There must be a mathematical theory for them, and
it will not be a trivial thing. Complex nonlinear dynamics is ubiquitous in practical

physics via those quantum approzimations which introduce decorrelation!314,

3. Hamiltonian mechanics

Let us recall the basic notions behind the classical equations of Hamilton'®. One
fixes upon a phase space of dimension f, with the generalized coordinates ¢; and
momenta p;, where j € [1, f]. We then consider the dynamical system

d
— = h
dt {.7 }PB’ (7)
where h(q,p) = h(q1,...,4f,P1,...,ps) is the hamiltonian function and
o 0 o 0
{.’ .}PB = (8)
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is the Poisson bracket (summation convention implicit). Here we allow that f
might take any value whatsoever, and that A might be any sufficiently well-behaved
function. In the sequel we will restrict h.

This system of equations, if linearized about any point, exhibits an obvious
symmetry group, the well-known symplectic group, Sp(2f), in f dimensions®®. It
is basic to the area—preserving nature of a classical flow, and its higher integral
invariants. Other symmetries, such as those which are associated with preserved
lengths, or angles, the orthogonal group, O(2f), have no place in this most general
scheme, except via restricted choices as to the function h (harmonic oscillators).

4. Quantum dynamics as complexified classical dynamics

Suppose now that we allow a different view of the quantities ¢; and p;. From the
mathematical standpoint they are simply two sets of real numbers, associated in
pairs. We do not have to identify them as particle coordinates. On this basis,
Strocchi'®, and Heslot!” have introduced complexified classical coordinates:

by = (4 +ipy)/V2, (9)
by = (a5 —ipy)/V% (10)
from which we obtain the complezified Poisson bracket

o 0 g 0 .
{.7 ‘}P~B = 67’(/1381;] - 871/1387% {.7 .}PB/% (11)
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and the equivalent equation of motion

Z% = {&,h}pp- (12)

Strocchi'®, Heslot'” and Weinberg®, among others, have observed that by choosing
only those h which are bilinear hermitian forms, i.e.

with Hj, = Hy; (hermiticity), we find that
{9.h}ps = ©;GjxHu — HjuGry (14)
{¥jhypg = Hjutw. (15)

Employing now the notations ¢; = (j|¢), and Hj;, = (j|f]\k), one makes contact
with the usual Dirac formulation of quantum theory.
As such, it is possible to embed the two quantum equations

n L i (16)
L d .
iy = A (17)

within the Hamiltonian formalism, by complexification.

Since complex coordinates have no physical dimension it is not possible to carry
over any classical analogy with the generalized coordinates and momenta. Evidently,
such a mathematical system demands a different physical interpretation. The only
thing one may carry over is the identification of h, the dynamical generator, as a
real-valued quantity with dimensions of energy. If that is to be done, then we need
to insert a constant 7, with dimensions of action, upon the left—hand side.

This system of equations, being already linearized, exhibits an obvious symmetry
group, the well-known unitary group, U(f), in f dimensions. This is basic to the
Copenhagen interpretation of quantum theory. There one simply postulates the rule
for calculating transition probabilities. If one is to make such a postulate, and keep
it independent of how we choose our complex coordinates, then Wigner’s theorem

confines attention to linear unitary, and anti-linear, anti-—unitary symmetries'®

5. Specialization or Generalization?

The preceding is well-known. Mostly, it has not been paid much attention by
physicists. Perhaps this may be because it is unclear whether the introduction of
complex coordinates, represents a generalization, or a specialization.

The point is, if it were a specialization, then we would know how to find a
generalized quantum dynamics! We would know a larger mathematical structure—
the Hamiltonian formalism; and a sieve, a quantum physical principle—at all costs,
make this consistent with complex numbers.
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6. Conformal mappings, orthogonality and analyticity

Long ago, Strocchi'® saw the importance of analyticity in the deeper elucidation of
quantum dynamics, and its connection with classical dynamics. He observed that
it is a specialization. As a precognition, note the group identity'®

U(f) = Sp(2f) N O2f). (18)

Unitary geometry is a restriction of symplectic geometry. We must ask: Why?

At root, complex geometry is intimately related to the orthogonal group. When
we introduce an imaginary unit 4, we have chosen to keep in our sight a notion of
orthogonal components. That is what i = e’"/2 means; a rotation, by /2, from
which we derive a multiplication, being that of the orthogonal group.

When considering infinitesimal mappings of the complex plane into itself, it is an
old and classic problem to classify the angle—preserving transformations. The result
is the conformal mapping theorem'®. It says that the only isogonal, i.e. locally and
strictly angle—preserving mappings have analytic generators. To the general map
z + w(z, z), one applies the Cauchy-Riemann conditions, to get d;w = 0. For
dynamics, i.e. 2= w(z, %), we have the analyticity constraint

0z%2 = 0zw(z,Z) =0 and c.c., (19)

i.e. we apply Cauchy-Riemann conditions to the time-derivative”.

7. The classical imaginary unit

If we are to introduce ¢, without smuggling it in, then we must identify a quantity
that can play the role of /—1. Return now to ordinary classical dynamics, and
introduce, in the manner of Arnold!®, a vectorial notation

Zop = ( ;1 ), where q = (¢1,...,¢5), and p = (p1,...,py),

along with the matrix

(0 —E;

where Ej is the f x f identity matrix. Then, Igf = —Eyy, so that Iy is certainly
the square root of minus the identity. Further, denoting the matrix transpose by a
superscript T, we find Iy, = —Ipp = Igfl.

Thus we have: an imaginary unit 4, Isf; a complex conjugate operation *, which
is T' of the units Iy and Eof; and an hermitian adjoint operation f, which is 7' of
the entire complexified vector. Explicitly,

+ .
E2f<g)+12f(g):<+g>ZQ+ZP7 (21)
* + .

al; = {E2f<g)+12f<g)}T=(+q +p). (23)

Z2f
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With these definitions, multiplication by a complex scalar a + ib is defined

(a +1ib)zoy = aBay ( g ) + bl ( g ) = (aq — bp) + i(ap + bq), (24)
and the induced hermitian inner—product reads

W;fz2f = (qw *dz + Puw 'pz) + i(qu Pz — Pw - qz) eC, (25)

where we must multiply things out keeping track of the units Eoy and Iyy.

In this way, one equips a real vector space of dimension f with the operations
of complex algebra. The quantity Iy is called the complex structure tensor (here
in canonical form). The differential geometry of complex, and almost complex
manifolds® develops the usual assumption that Is; need not be a constant (i.e. basis
vectors may vary). Just as symplectic differential geometry underlies real-valued
Hamiltonian dynamics'®, the almost complex differential geometry must underlie
complex—valued dynamical systems.

8. The conformal restriction of Hamilton

Let us now apply the Cauchy—Riemann conditions to the equations of Hamilton.
We introduce an ¢, assume it is a constant, and demand that

e = 10+ ipe) V2 = (% n ah) W2, (26)

dqr. ~ Opk
is analytic. Applying the operator

o (i)

av;  \dq; ~ Op;
to both sides, we set 9 [x] = 0 + 40, and obtain the conditions
2 2
h + Oh = 0, (27)
9q;0pr ~ Op;Oqy
0?h 9%h

— = 0, 28
Op;jOpi  0g;0qy, (28)
(for all j,k € [1, f]). Any function satisfying Eq. (27) and Eq. (28) will generate a
complex analytic dynamics, via the standard equations of Hamilton.

Since they are second-order identities, we substitute a general second-order
power series, equate coefficients, and obtain the solution

1
h(a,p) = a +b;¢; + ¢jpj + 5 (Ajraar + 2Bjkp;ar + Ajkpipr) (29)
where all coefficients are real-valued, and we need: B, = —By; to satisfy Eq. (27);
and A = Ay;, from Eq. (28), since the partials commute. Now we compute
oh
0 bi + Ariqi — Brap (30)
dk
oh
= ¢k + Appi + B (31)

Api
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In vectorial notation, the final result reads

A D)) e

Introducing the matrices:

Yo = (b+ic)/V2, (33)
H = (Ayr+iByy)/V2; (34)
we can rewrite this as o
i—— =1 + Hy, (35)
dt
where, since A;ff = Ay, and B;:f = —Bgyy, we have
H' = AJ, +[iByy]" = H, (36)

so that the generating operator is hermitian self-adjoint.

Having shown the above, in the formalism of complexified classical dynamics,
we may now revert to the usual complex notation. Then Eq. (27) and Eq. (28)
assume the more symmetric form

A2%h
OOy

for all j,k € [1, f]. Notice that non—commuting operators appear by restriction.
One has to narrow down the class of functions h to obtain them. Less is more.

=0, and c.c. (37)

9. The projective restriction of Hamilton

To remove the constant factor vy, in a physically meaningful way, we invoke an
idea of Kibble?, and demand the scaling invariance: v(t) + A(t). A more elegant
statement is the Weinberg homogeneity constraint®

h(A, ) = A1), ) = h(i, Mp). (38)

Differentiation against A\ reduces this to the identities
oh - Oh
Yi— =h=1¢;—. 39
J awj J 81/1] ( )

Applying this condition, along with Eq. (37), we obtain, uniquely, the functions
h(3, 1) = 1 Hjx1bk, where reality demands that Hjj, = Hy;.

10. The origin of Hilbert space

The Hilbert space geometry is reconstructed by applying spectral theory to the
square of the generator H’. This gives us a positive-definite matrix (we allow
no zero energies). As is well-known, any such hermitian form provides an inner
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product, and, via the constancy of its coefficients, this inner—product is seen to be
an invariant. Thus we obtain an Hilbert space geometry, and we can recover the
traditional language of the Dirac transformation theory.

Moroever, since f is arbitrary, we have covered all possible unitary symmetries
U(f). Their realizations upon Hilbert spaces of all possible dimension, which carry
representations of any chosen abstract group, will generate special cases of the
given structure. The only thing one cannot obtain a priori is the usual statistical
interpretation. Of course, at the present time, this is just a postulate anyway.

11. The three postulates

Thus the combination”:

P, : Hamiltonian formalism
Py : Complex structure

Ps @ Projective structure

is sufficient to deduce the Schrodinger dynamics, for all possible f. Unlike the usual
axiomatization?®, Hilbert space is now a consequence.

The given axioms are new, so far as I know, but the observation that complex
projective structure, and Kdhler geometry underlie linear quantum dynamics has
been widely appreciated. See, e.g. Cirelli et al.?!. The main reason I have sought
a new statement is to formulate the postulates as differential identities: Eq. (37),
and Eq. (39). Then, and only then, can we try relaxing the axioms, in degree, e.g.

0%h
00y,

Since zero is precisely the usual linear theory, a “small” value ought to mean weakly
nonlinear, and a “big” value, strongly nonlinear. The value of this axiomatization

# 0. and c.c. (40)

is thus to identify departures from linearity with non—analyticities.

12. Nonlinearity and non—analyticity

We must now investigate if non—analytic complex coordinate transition functions
make any physical sense. Interestingly, the projective postulate, as expressed by
Eq. (38), enforces the general decomposition

- _ 0%h
h(ﬂ}ﬂf/) = lbkm
J

Moreover, as Weinberg has shown®, such functions form a Lie algebra in complexified

V;. (41)

Poisson bracket. Thus we retain, in general, a notion of operators, but these are
now more like tensors. At the very least, they are form—invariant. Further, we can
always single out one such hermitian form, obtain a local inner—product, and thus
erect a tangent Hilbert space. There is no longer a global linear structure; it is now
a purely local notion applicable only to infinitesimal transformations.
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This gives a clue to the meaning of non—analyticity. In the theory of Berry phases
one considers evolution under an adiabatically cycled Hamiltonian??. There we find
that a geometric phase factor is required, being given by an hermitian connection in
the projective space of states. It is non—analytic, and non—integrable, being related
to the parallel transport of eigenvectors in Hamiltonian space. Guided by this idea
we may explore the generalized gauge transformations”

W(t) = (8) = EPOT0Y(D).
with ®(1,4);t) arbitrary. These leave functions of the type Eq. (38) invariant, but
they destroy analyticity, since 1/~Jk(t) = eiéil-)k(t) + i{d;®}e'®4y,(t). The mapping

is only analytic: up to phase. Thus it seems that we can allow Eq. (40) and that
non-analyticity is connected with a generalized gauge freedom?3:24:25

13. Conclusion

In summary, we have shown that ordinary linear quantum dynamics can be viewed
as the conformal and projective restriction of Hamiltonian mechanics. The non-
commuting linear operators appear as a new layer of extra structure peculiar to
this restriction. The lesson lies in the specialness of complex numbers. Perhaps this
is a useful guiding principle: Let there be a complex dynamical system. Can we say
what it must look like, if it is to be a Hamiltonian system? Is it just Weinberg®?

On a practical level, the reason to be interested in this question is simply to
develop the mathematics of quantum approrimations. Almost never do we use the
quantum theory in pristine text—book-linear form. One must generally simplify
equations by treating some parts of the system classically. Yet, as I have shown
elsewhere!!, this induces a nonlinearity via the replacement of some operators by
their c-number expectations. The value of a larger system of mathematics is that
we can do this computation within a single unified formalism.

On a fundamental level, suspension of the superposition principle only makes
sense for quasi—classical physics. Nowadays, it is not uncommon to break with
the tradition of Heisenberg!, and suggest that we need a unified micro and macro
physics2®. Presumably, this means: we are no longer of the opinion that 1 is simply
the probability of finding a point—like particle here or there. Then we require another
meaning, and recovery of the standard statistical rules, as a consequence.

It is for this reason that I have argued that a fundamental nonlinear theory must
solve the measurement problem”. The recent research has taught us that the usual
statistical rules will not carry over as postulates®'?. Therefore, one would have to
treat measurements as having a physics attached to them. Here the aim would be to

complete the physics of decoherence?®

, i.e. to invoke an emergent, and necessarily
weak?”, quasi—classical nonlinearity that would reduce the decohered density matrix
to just one alternative, in the proper statistical fashion.

Perhaps the mathematics can tell us more about these questions. For instance,
it might provide clues about how to do it; or good reasons why such a program will

never work??. In any case, I find complex nonlinear dynamics fascinating.
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