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The solenoids considered in this note are continu-
us systems of currents in which the law of distri-
ution is much more general than is ordinarily
Amitted.

1{1 assume that they are formed in the following way:

o o

]

Take a closed space, S, which is bounded in every
rection by a closed surface, w. If a function & (x, y,
z|) which has the coordinates of the points of S is
assumed, the only condition on this function is, that
in this space itis single-valued, finite, and continuous,
nd so are its partial derivatives. The surfaces rep-
resented by the equation & = constant, which I will
indicate with the symbol (&), are all distinct from each
ther, and the lines, in which they intersect the surface

, are also distinct from each other and closed. These
nes divide the surface, w, into an infinity of elemen-
tary strips, each of which corresponds to the infini-
tesimal increment dd of the function &. Then the
qurrent is made to circulate in each of these strips in

Editor's Note

and A, are differential operators of the first and second degree
r kind. These are defined in a paper entitled Richerche di analizi
pplicate alla Geometrie in his Collected Works, Vol. 1, page 143.

Itrami’s differential operators may be expressed in terms of
Einstein’s notation as follows:

| Af=giff=g@flax)@f/ax) )
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a determinate sense. The intensity of the current is k
dd, where k is a constant and dd is the increment of
the function & passing from one strip to the other.
All of these currents form the general solenoids that
[ wish to study at this time.

It will be useful at this point to review some general
information about this system. First, note that the way
in which the system is formed does not exclude that
the geometrical locus of the effective currents can be
an open surface rather than one which is closed. In
fact, if we make one part of the w surface coincide
with a portion of one of the (¢) surfaces, the boundary
line of this common portion becomes a terminal cur-
rent of the solenoid because the intensity of the cur-
rents is zero, which in the general case would circulate
on the common portion.

Second, if we suppose the k factor to be constant,
we do not thereby restrict the law by which the in-
tensity varies. In fact, if we want to make k change

This is the Beltrami operator of the first kind that assigns to
each scalar field f the length of the gradient of f, grad f, or Vf.

Afe —gif ot/ (axax)— g Thalax (2)
This operator is of the second kind and is identical with —A
where A denotes the Laplacian:

Vif=divgradf=V .Vf=
UNgalVeggiaflax)]/ax
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from one strip to the other, for example, if k = F(b),
it will be sufficient to substitute for & a function ¥ =
SE(d)d b. In such a case, there would be a new system
substantially equivalent to the first, in which the in-
tensity of each of the elementary currents will be ex-
pressed d¥. In order to simplify, I will suppose that
k = 1, since multiplying the final result by « if it
reenters the first hypothesis.

Furthermore, I can say that the necessity for the
condition that requires the derivative of the function
& to be single-valued does not imply that the function
must necessarily be single-valued as well. It is useful
to be able to take a function that is not single-valued
(this means that it has periodic form) in order to apply
this method of the solenoids to more general cases;
but, in this case, I will consider the ¢ functions as
single-valued in order to simplify the research on the
potential function of the solenoids, which is almost
intuitive, and at the end of the note, | shall give a
second demonstration of the formula derived, from
which it will be very easy to study the value of func-
tions which are not single-valued.

For greater clarity, I shall consider the hypothesis
that the successive lines of intersection of the w sur-
faces (¢) correspond to the values of the preceding &
parameter, from a minimum value ¢, to a maximum
value .. In fact, if the w surface is not consistent with
this hypothesis, we can change it by substituting closed
surfaces that do satisfy these conditions, and in this
way we can add some diaphragms that have cirqu-
lating currents, or portions of currents of equal inten-
sity on each of their two faces, that move in opposite
directions.

I denote, with i, the direction of the inwardly facing
normal to an element of the surface dw, and with|r,
the distance of this element, which has x, v, z as
coordinates, from a point m,, which has as coordinates
x,, i, and z,, on which we suppose the electromag-
netic action of the solenoids to act. | consider that this
last point is at a finite distance from the w surface,
from the internal to the external part.

Now consider one of the elementary strips in which
the w surface is divided, and let &, and ¢ plus dd be
the values of the parameter corresponding to the two
lines that have this strip between them. I will suppose
the increment dd, to be positive, of the pair of all the
analogous increments; it is not necessary that the rest
of these increments be equal. Let w’ be the portion of
w that is the locus of all the lines (¢) in which the
parameters are between the intermediate value & and
the maximum value &,. This portion of the surface is
totally determined by the closed line of the & param-
eter; therefore, because of Ampere’s fundamental
theorem on the electromagnetic action of closed cur-
rents, the potential on a point m,, of the current with

intensity dd, which circulates around the surface w’,
can be expressed by the integral

extended to all the surfaces w'. Now the potential @
of the entire solenoid is evidently the sum of all the
expressions like this, relative to the successive incre-
ments of ¢, from ¢, to ¢,. Summing these, and col-
lecting all the factors that are to be multiplied, for each
element dw of the total surface, we have

1
d;
(b = 0 W
& Zn’cp dw.
Then it is clear that
de) = ¢'_d}1,

where ¢ is the value of the parameter on the element
dw: then

d% tf'l-
p
b = = - —
P ®dn A=) dn de,

that means, according to a well-known theorem

1

d;_
= ok = 4 g
o ¢ dw TEQ

where ¢ is 1 or 0, according to whether the point m,
is internal or external to the space §,

The function @ so determined is continuous in all
the space. But it is much more useful to replace this
function (which I will continue to denote with the
same symbol)

1
b = i i |
B P 4

which has the same derivatives of the preceding, even
if it is discontinuous in all the points of the w surface.
This last circumstance is not influential, because, as
[ said, the point m,, need never cross this surface.
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We remember now Green’s equation
1

r_Lde) o 12%

ifn rodn v dS + dmep(xi,y,z),

b

fhere ¢ has the same meaning as before, and where
fe pose

-

s Fo ¢
o= —m 4 —T
b= o oy’ | oz’

P

If for brevity these notations are used
A? l e d
p=| ¥y, n=| 22
r du
we will have

I

here &, represents the value of the function & at the
ppint m,.

The two functions P and II are'two Newtonian po-
tentials, one of space, the other of a surface that cor-
responds to the well-known distribution of matter in
the space 5 and on the surface w, distributions that I
shall call p and w. The total masses of these two dis-
ibutions are equal in their absolute value, but con-
ry in sign, because of the equation

1

N d(,p
g - . = 0.
Ap - dS + T dw =0

|

Of the two expressions (1) and (2) of the potential
, the second is, in the greater number of cases, far
ore useful than the first one. Therefore we will not
ak about the significance of equation (1), but only
apout the results contained in equation (2):

The electromagnetic action of the general solenoid
is equal to the resultant Newtonian action at each
int external to 5, that is, due to the distribution p
and w; and, in each internal point, the resultant action
ignot only due to the distribution of these two actions
ahd to a third, whose potential is 4md.

This theorem is true without modification also in
the case in which ¢ is a multivalued function with a
gle-valued differential function, provided that the
fanching lines are external to space 5. This results
immediately from the demonstration that 1 will give
of equation (1), since all that I am about to say refers

=

to the multi-valued functions, it is understood with
the restriction or so-called branch lines. Furthermore,
because it is possible to satisfy the conditions of the
{LaPlacian equation) 4*¢ = 0, in the majority of the
cases, and, because it is really true in each case which
we know today of the general theorem that we enun-
ciated previously, I shall suppose that the condition
be true. That means that we suppose that the distri-
bution p be 0, then P = 0, then we must consider
finally the distribution =, with the surface potential
I1 relative to .

The simplest way to satisfy the equation A% = 0
is to take as & a linear function of the coordinates
x,y.2. In this case, the solenoid X is formed by currents
placed in parallel planes, and with the intensity con-
stant, if the distance between planes is constant. With
these hypotheses, the previous theorem reproduces
what is called the Riecke theorem.! The observation
that the author Riecke made, about the possibility of
substituting the surface distribution =, which has a
variable density, a certain space distribution, with
constant density is nothing but a corollary of another
general property about which [ recommend that the
reader refer to my monograph “Research on Fluid
Kinematics™ because this theorem is related to the
motion of a fluid.

Second, suppose that the surface w be formed by a
tubular portion, where the axis is orthogonal to the
surface {¢) [at each point], and where it is closed at
its two ends by the intersection of two surfaces. In
this case, the distribution = exists only on the two
terminal portions of the tube because on all the tubular
part we have dd/dn = 0. The electric currents circulate
only around the tubular portion, and the theorem
describing the action of these currents is the same as
the theorem of Lipschitz.

These two theorems, by Riecke and Lipschitz, have
a particular case in common in which they agree, It
is when & is a linear function and w is a cylindrical
surface whase axis is perpendicular to the planes &
= constant, and whose ends are closed by terminal
sections that coincide with two of these planes. The
theorem about this cylindrical solenoid with an ar-
bitrary axis was already given a long time ago by F.
Neumann® and was recently discussed with great ac-
curacy by Emilic Weyr.”

A case that is in some ways reciprocal to Neumann
and Weyr is as follows: If & is a cylindrical potential,
&, and ¢, the parameters of two equipotential surfaces
outside of the acting mass, and ¢, is internal to &,;
and lastly, let p’ and p” be the portions that are cut
by these surfaces. Applying the general theorem to
the surface w that is formed by the two plane bases
g’ and p" of the cylindrical partions ¢, and ¢,, it is
clear that the distribution = exists in this case only on
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the latter two, and the electrical current circulates
around the two former; and therefore the actions of
these are equivalent for external points; however, they
ditfer at internal points, because of the action of the
potential &. Suppose, for example, that & = log 7,
where r is the distance between the point (x, v, z) and
a given straight line, which means that the cylindrical
potential must be the same as that of an infinite straight
line; and let the radii of the two cylindrical surfaces
&, and &, be a, and a,. Because a, is less than a, we
have

e _ 1 tl f
= on the surface g,
dn  a =
d\p

1
= —— on the surface ¢,
dn as

and the potential of the electrical currents that cir-
culate around the two rings, p’' and p”, are given by

1 dw, 1 dw,
[l =— —— = + 4mwe log 1,
iy g i Vs

where the indices 1,2 are used to distinguish between
the relative quantities of the two cylindrical portions
&, and ¢.. The two integrals found in this formula are
evidently the Newtonian potentials for two strata,
having the density of 1, that are deposited on the two
cylindrical surfaces. The electric current circulates
around the two rings p’ and p”, which are concentric
circles at the two boundaries, with an intensity jin-
versely proportional to the respective radii, supposing
that the width of the strip be constant. If we put one
of these base planes, for example, p”, at infinity, we
are left with only p’, having two electric currents, and
preceding formula reproduces the results of Emilio
Weyr, arrived at in a different way, published in Vol-
ume 13, in Schlomilch's Journal (1868) p. 437. The gen-
eral theorem explains, at the same time, the difference
that occurs in the electromagnetic action, between the
case where the point at which the electromagnetic
action is acting is projected inside the rings and that
in which it falls outside.

I will suppose now that the surface w be orthogonal
at each point to (), which cuts the surface. Generally
speaking, that means that & must be a multivalued
potential function, and that, in this case, the form of
the surface w is like that of a tube which goes inside
of itself. With this hypothesis we have P = 0, and Il
= 0, and we have

b = 4med,

which means that: the external action of the solenoid
built in such a way is 0, while the internal action is

given by the product of 4w and the actions of the
external currents that produce the potential ¢. [ regard
the first of these two properties that it is already a
condition of the other; it can be demonstrated that it
is a kind of configuration called a neutral solenoid.

The neutral solenoids have many characteristics in
common with electrical strata in equilibrium over the
surface of a conductor. In order to show this case
better, we will use Green’s formula, and we will write
this in the following way:

at
1 r 1 de 1 Ay
4 Pdn  ran = 4w J’ T 5 Fiepi

Then we will observe that:

First, if ¢ be the magnetic potential of a system of
masses and if w is an equipotential closed surface that
contains within itself all of the masses, we have over
this surface the potential & = constant = &, and then

1| dedo

aw | dan v (h="e¥ar + 6w

This formula contains all of the theory of the so-called
level strata which, as is well known and as is derived
from the previous equation, can be substituted for the
masses at all external points (¢ = 0); and for the in-
ternal points the action is zero where (¢ = 1).
Second, if & is the electromagnetic potential of a
system of electric currents and w is a closed surface
orthogonal to the equipotential surfaces, which do not
contain any currents inside of themselves, we have

over these surfaces dd/dn = 0 and then
1
1 “
e © o dw = eg,.

This formula contains all of the theory of the so-
called neutral solenoids which, as we have said before,
and as we saw from the preceding equation, can be
substituted for the electrical currents at all of the in-
ternal points (e = 1), and the action is 0 for all of the
external points (e = ().

The comparison between these two statements in
which I have underlined the words and phrases that
constitute the difference, illustrates the duality which
exists for many problems, between electrostatics and
electrodynamics, and shows reciprocity, to which 1
alluded before, because it is well known that the elec-
tricity in equilibrium over the surface of a conductor
distributes itself in such a way as to form a level strata.®
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Boltzmann has already spoken about this analogy.”
Hé demonstrated that the potential that a neutral so-
lenoid exerts upon itself is a minimum of all the con-
figuration of systems of the currents which can circulate
around the given surface w subordinated to certain
other conditions which it is not necessary to specify.
From this, the result follows that in neutral solenoids
the electrical currents are themselves kept in equilib-
ritim, and this is the same as occurs in the distribution
of |static electricity upon the surface of a conductor.
This minimal property is intimately connected with
the so-called Dirichlet Principle because, in virtue of
a formula that was demonstrated at the conclusion of
the § 17 of the cited monograph (in which I extended
Hélmholtz's theorem in his paper on vortices), the
potential of the neutral solenoid upon itself is equal
to the product of 27 and the integral

- 5 v Fl|
) () ()
x ay oz

extended on all of the space § inside the solenoid.

A singular circumstance is that the general theorem
demonstrated previously, which we can apply in a
simple way for many problems, cannot be simply ap-
plied to the most simple solenoids, which are known
as| Ampere solenoids.® In such cases, the potential
function of these solenoids, which are formed by el-
ementary currents, both equal and equidistant, and
which are perpendicular to the axis, can be immedi-
ately calculated from the potential of a single current,
by|integrating along the axis. It can be shown, how-
ever, that the method of calculating their potential is

a special case of the calculation for the general solenoid
2.

The function & in such cases is not explicitly de-
pendent upon x, y, z, but depends upon the equation
F(x, y, z, ) = 0. In such a case, if we represent with
A the sum of the squares of the first derivative with
respect to x, y, and z we have

AF .. . L[FAEN"
Anp-T__-;:' A@—F,[(P) AF]

where the prime indicates the partial derivative with
respect to ¢ in F, and then also in AF. If we take as
F a function which has the following forms

dc

dE d
F= (x—&)g(% -l e=0E

where £, v, { are the coordinates and ¢ is the arc of
any line L, so that the surfaces (¢$) are in this case
planes normal to this line. In this hypothesis, we found
that AF = 1, and A’F = 0 and then

_ ..
— F12 F?’

F=x-+y-—mn"+@E-H -1,

A¢ A’p =

Fr=@x -8+ - " + - .

The x, y, z that are found in these equations by
virtue of the equation F = 0, the coordinates of a point
m existing in the plane normal to the line L at point
i, which has coordinates £, v, { and with parameter
¢. In order to fix the position of m in such a plane, 1
imagine two orthogonal lines lying on the plane, de-
termined by each point p, well-defined for each value
of ¢, the normal principal and the perpendicular to
the osculating plane I call #, v the coordinates of the
point m with respect to these two axes. In such a way,
the position of any point in space is determined by
three values of the quantity ¢, u, v, which three num-
bers are totally separate if the point remains in the
region around the line L. Because of these conven-
tions, and also because of the theorems that we know
from differential geometry, calling vy and & the cur-
vature of the first and second species of the line L and
at point ¢, we have

F'=vyu-1,F = v u—vydv,

and from this we get u = 0, v = 0, if Ad = 1, and
A% = 0. This result can be formulated in the following
manner: considering the arc ¢ as a function of the
coordinates x, y, z of a point on a plane normal to a
line L, at the variable extremity of the arc itself, the
equations Ad = 1 and A*p = 0 are satisfied for the
coordinates x, y, z, at all points on the line L.

In consequence of this property, the expressions
Ad — 1, and A%} are infinitely small in each point
which is infinitely close to the line L, and are the same
order of distance of this point from the line. Therefore
if this line is the direction of an Ampére solenoid, in
formula (2) we can pose

Ad, = 1, A% = 0,
and thus,
Pr=§

because, since derivative db/dn = 0, on all the tubular
surfaces, we have only an error of the third order,
and the remaining quantities are of the second order.
These quantities are the value of II, which depend
upon the two boundary sections, and because we have
dbldn = =+ VA = = 1 (the sign + is relative to the
origin of the arc, and the sign — to the end), it is clear
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that the previous formula precisely reproduces the
result which we know.

What remains now is the analytical demonstration
of the equation (1), and we will first define the fol-
lowing lemma. Because of the condition of being sin-
gle-valued which we ascribed to the function &, we
have, the transformations

i de dz
f “Pas= - | 2240
dyoz dy dn

then the relation follows

(.r'lnp dz  de¢ dl})
— — — ——= | dw = 0.
dy dn oz dn

o d
—¢- E—-‘E. w A
dz dn |

I will demonstrate that this is true also in the case
of substituting the function &/r for the functions &.
That is very clear when the point m, is external to the
space 5. But when m, is inside, the function &/r be-
comes infinite in m,, and we cannot use the previous
transformation. I will suppose then, for a moment,
that the surface w be a spherical surface w,, whose
center is m,, with a finite radius r; then I shall rewrite
the previous equation, substituting the product of
r(d/r) for &, We have then, taking the derivative of
the product '

K ¢

rdz rdy

dy dn z dn
1 (ﬂ dz o iz) i S
r ay dn iz dn

Now the element of the second integral is always
0 because of the hypothesis that we have

dar dx  or
ox dn’ ay dn’' oz dn

dy  ar dz

then, in order to have r > 0, we have

dg rJE

rodz r dy
s s Iy = [N
dy dn dz dn

We have this equation that has the same form as the
previous one, but refers to a spherical surface w,, with
a finite radius with its center in m,, where the function
&/r becomes infinite. We can see now if w is any closed
surface from which the point v, is a finite distance,

we can always inscribe a spherical surface w which
will not extend beyond the space S which is bounded
by the surface w. In the space between the two sur-
faces, the function ¢/r satisfies the condition true for
¢; then the integral

¢ ¢
i i o

rdz rdy »
e e w
dy dn  az di

has the same value for the closed surface w and thus
for point m, at a finite distance from all of its points.
(It would be equally provable that such an equation
could exist, substituting for r a function of r, so that
r = 0).

¢ K
o— o—

r dz rdy
— =it N = 0 3
dy dn 9z dn = ©)

Returning now to the argument, I shall indicate with
s, the arc of any of the lines (¢), and 1 shall determine
the direction in the following manner: from a point
(x, y, z) from this line (¢) I will produce two radii, one
in the direction of the normal internal to w, and the
other in the direction of the minimal distance d o of
the same point on the contiguous line (&b + dd) which
we take from the part where dd is positive. Then |
assume as the direction of the arcs s that is growing,
that is, of the positive ds, the direction that is like the
positive z axis, placed with respect to the positive x
and y axis. In this hypothesis, through very easy geo-
metrical steps we have

dpdzs _iedy _ _drde
ay dn dz dn ds da’

dg dx dg ff_Z _ _ifj i? @)
dz dn ox dn ds do’

dody e dx _ _dzde

ax dn oy dn ds do

Now it is well known that the components of mag-
netic action of a system of currents are given by

Pz dY

ax, B iy az

ad aX az

T = ey )
d.lfl oz, ax,

i axX

dzy dxy o dy
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| where 1
| d-

;
dx dy - Fan .

F X = dg _r_ 5 B = de T ,
! We find that the three derivatives of the potential ®
i dz and of the functions
! |Z =] de = :

I [f; (6)
.! (Pa dw

|
Then| we have by virtue of equation (4), making
ds do|= do,
: are equal to each other. These two functions can be
taken, one for the other, in the calculus of the com-
ap dz  ae dy) s ponents, and in this we establish equation (1), which

!
iI
A== ay dn  azidn is now demonstrated.

p
| We observe that when the function ¢ is multivalued
! with one or more periodic forms, we can always, by
| That means for equation (3) making perpendicular cuts in the space S, (in a num-

| ber equal to the forms) transform it into a single-val-

P dy edo @ dz edw ued function. The presence of such sections, each of
X = = | 3 = 30!l 42z which penetrates the space twice on either side of the
o ] L cutting plane, on the new overall surface I'll call (,
does not change the surface integrals whose elements
and similarly contain & as a factor. Then we need to write
| y= L | Zeke | del drod | dyedd | dz gd0)
' iy ] - i aner dn r ' dn r dn r
i dx gdw i ﬂ q:d_m in place of

T oay, dn r ix, dn r
' dx pdw dy edw dz edw
dan r ' dn r ' dan r '

Sublstituting these values in the second members of

5 bservi t we h
| (5),|and observing that we have and then we have

1
/ ’ d;
: dx edw
Al ——— =0, — dQ}
4 dn r ® dn
A2 dy edw _ 0, in place of
dn r 1
d;
— ;
g | 2ot Fan ™
| dn r
i that means of ®. But this substitution does not influ-
3 dx ¢dw @ R dz gdw ence the proposition that we made around equation
‘ b | e v T 36 v T8 b ode 7 (2), because the integrals P and [T are not changed by

dx 1 q 1 dz . |
‘ o LA S 1 substituting the () [the surface after the cut] for w. ‘
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This proposition then, is true, under the condition

that the branches, in which the derivative of ¢ ceases

to be single-valued, is finite and continuous, and ex-

ternal to the space S. And this is what we said above.
In other words, the integral

dl

,
@aﬁdﬂ

is the same as the primitive

dl

’
‘pa;;dm

added to the sum of the potential of the currents which
cirulate around the transverse sections, with equal

intensity with respect to the periodic form and this is
explained in § 70 of my monograph.
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