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Abstract

A key obstruction to further developments in nonlinear quantum theory is the lack of obvious

procedures for their quantization. How should we construct candidate nonlinear theories when the

orthodox quantization techniques can produce only linear partial differential equations? To escape

this impasse, we return to an early idea of Schrödinger and seek quantized values via the nonlinear

generalization of linear spectral theory, realized via self–energy terms.
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I. INTODUCTION

The utility of the superposition principle is well–established, but we may well ask if Nature

accords it the full force of law[1]. More interestingly, we may ask what larger physical theories

are possible if one permits small violations of it. Perhaps if the superposition principle

were an approximate law, a different interpretation is made possible. Such an alternative

interpretation might permit novel extensions in the scope of quantum field theory — to

include gravitation alongside the other interactions. That is the larger aim behind our

studies in nonlinear quantum theory.

Here we explore adding nonlinear terms as a means to rescue the Schrödinger interpreta-

tion from oblivion[2]. First, we consider how nonlinear terms can widen the possible class of

reduction mechanisms in theories of quantum measurement based on decoherence. Second,

we show how nonlinear equations are compatible with the Schrödinger interpretation. Fi-

nally, we add a nonlinear gravitational self–energy term to suppress macroscopic dispersion.

The result is a quantized nonlinear theory that overcomes the key failings of the original

Schrödinger viewpoint[3, 4].

II. PHYSICAL INTERPRETATION

Interpretation plays a dual role in physics. It ties the mathematical constructs of a theory

with elements of the physical world, and offers a framework to conceptualise the physical

world when formulating new theories. Less obvious is the role physical interpretation plays

in fixing the intended scope of a theory. Figure 1 elaborates this point, comparing three

approaches to the interpretation of quantum mechanics.
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Figure 1a depicts the Copenhagen interpretation. This divides the universe into two: an

observer (an eyeball) and the observed (a superposed wavepacket). There is no attempt

to explain measurement, only a rule for extracting the probabilitities associated with each

branch in the superposition of possible measuremnt outcomes.

Figure 1b depicts a popular interpetation based on environmental decoherence. Coherent

superpositions are extremely fragile in macrosystems with huge numbers of constituents.

The off–diagonal phase relations in the density matrix are rapidly destroyed when a coherent

quantum system (the observed) interacts with a laboratory instrument (the observer). Hence

one can model the mechanism for measurement, but we cannot say where in the chain a

measurement takes place.

Figure 1c depicts orthodox decoherence augmented by an additional physical mechanism

which acts to reduce the remnant diagonal elements in the density matrix. Nonlinear the-

ories permit interactions of this kind[3, 4]. One possible example is a gravitational force

of localization which acts to condense any putative macroscopic superposition into just one

manifest branch. The Schrödinger interpretation could be readily applied if we identify the

reduced density matrix with the laboratory reality.

III. SCHRÖDINGER NONLINEAR THEORIES

Consider a nonlinear wave equation of the form[3, 4]

i~
∂

∂t
ψ(x, t) = − ~2

2m
∇2

xψ(x, t) + V [ψ, ψ∗]ψ(x, t), (1)

where all nonlinearity resides in the potential V [ψ, ψ∗], such as V [ψ, ψ∗] = ±κ|ψ(x, t)|2.

While incompatible with the Copenhagen interpretation, such equations support an inter-

pretation based on the ideas of Schrödinger.

Firstly, one can generalize the existing linear spectral theory and define nonlinear eigen-

states by the condition

∇2
xψ(x, t) +

2m

~2
(E − V [ψ, ψ∗])ψ(x, t) = 0, (2)

where the eigenvalue E is numerically equal to the energy functional

H[ψ, ψ∗] =

∫
R3

d3xψ(x, t)

{
− ~2

2m
∇2

xψ(x, t) + V [ψ, ψ∗]

}
ψ?(x, t), (3)
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FIG. 1: Three levels of sophistication in the physical interpretation of a quantum measurement of

position for a wavepacket found “here” with probability |α|2, or “there” with probability |β|2. One

can: (a) submerge all mystery in an “observer”; (b) invoke decoherence to wash out off–diagonal

phase relations; or (c) posit a further level of decoherence, acting along the diagonal, to crystallize

individual events.

and exhibits a spectral sequence of quantized values. Secondly, the quantity

j(x, t) =
~

2mi
{ψ∗(x, t)∇xψ(x, t)− ψ(x, t)∇xψ

∗(x, t)} (4)

is a conserved current provided only that V [ψ, ψ∗] is real–valued. Finally, whereas the

superposition principle is violated, and we cannot in general expand each state as a linear

superposition of orthogonal eigenstates, we can write a linear equation for the evolution of

a density matrix functional ρ[ψ, ψ∗; t]. In particular, we could try

i~
∂ρ

∂t
= {ρ,H}FPB (5)

where the Functional Poisson Bracket (FPB) is defined

{F,G}FPB ≡
∫
R3

d3x

{
δF

δψ(x, t)

δG

δψ∗(x, t)
− δF

δψ∗(x, t)

δG

δψ(x, t)

}
(6)
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and we consider impure density matrices to be defined as suitable positive weighted mixtures

of pure states . This is most easily done using the definition

ρ̂(x,x′; t) ≡
∫
dψdψ∗ψ(x)ψ∗(x′)ρ[ψ, ψ∗; t] (7)

where ρ[ψ, ψ∗; t] is an arbitrary non–negative functional on the pure states ψ, and the inte-

gration is performed with respect to the canonical invariant measure dψdψ∗. Then a pure

density matrix functional has a measure ρ[ψ, ψ∗; t] concentrated on a single time–dependent

pure state ψ(t). It follows that the eigenstates defined above are also stationary solutions

of this generalized Liouville equation. Hence they comprise the possible steady states for a

closed nonlinear quantum system. Finally, since V [ψ, ψ∗] depends on ψ, we see that cross–

coupling of “diagonal entries”, i.e. ρ[ψ, ψ∗](x,x; t), is possible, as in Figure 1c. Thus one can

try and extend the decoherence scenario, including a density matrix framework, to nonlinear

theories.

IV. SCHRÖDINGER QUANTUM GRAVITY

The preceding indicates a plausible way for interpreting nonlinear equations, but offers

no concrete physical origin for nonlinearity. The existing quantization schemes generate

only linear equations, so we must identify some physically consistent origin for a nonlinear

quantization, i.e. nonlinearity must arise from a physical interaction.

Further, the Schrödinger interpretation suffers from a well–known difficulty with disper-

sion. Any nonlinear term we propose must suppress macroscopic dispersion, but leave the

microscopic dispersion untouched.

To meet both demands we consider a model where all physical nonlinearities are traced to

self–interactions , and consider invoking the gravitational self–energy as a generic localizing

mechanism to suppress macroscopic dispersion[3].

Interestingly, the Schrödinger interpretation permits a new approach to quantizing self–

interactions. Rather than attempt to second quantize the gravitational field and incorporate

self–energy as the 1–loop, and higher, perturbative corrections, we can now attempt a com-

plete non–perturbative treatment from the outset.

Specifically, we follow Schrödinger and re–interpret the square modulus of the wavefunc-
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tion as a mass–density, i.e. we consider

ρ(x, t) = mψ(x, t)ψ∗(x, t) (8)

as the mass density for our particle. The correspondence principle dictates that the self–field

behaves as 1/r for larger r. Hence we adopt the Poisson equation

∇2Vgrav(x) = 4πGmρ(x, t), (9)

as its source, and obtain the gravitational self–potential

Vgrav(x) = −Gm
∫
ψ∗(x̃, t)ψ(x̃, t)

|x− x̃|
d3x̃. (10)

Coupling (10) back upon the particle we find

Egrav = −Gm
2

2

∫ ∫
ψ∗(x̃, t)ψ∗(x, t)ψ(x̃, t)ψ(x, t)

|x− x̃|
d3x̃d3x, (11)

while the wave–equation becomes

i~
∂

∂t
ψ(x, t) =

{
− ~2

2m
∇2 − Gm2

N [ψ, ψ∗]

∫
ψ∗(x̃, t)ψ(x̃, t)

|x− x̃|
d3x̃− Egrav

N [ψ, ψ∗]

}
ψ(x, t), (12)

where the factor

N [ψ, ψ∗] ≡
∫
ψ∗(x, t)ψ(x, t) d3x, (13)

ensures nomralization, and the term Egrav/N [ψ, ψ∗], subtracted in (12), is there to avoid

double–counting in the calculation of the total energy functional[3].

V. QUANTIZATION AS A NONLINEAR EIGENVALUE PROBLEM

In Figure 2 we display the first two eigenstates of the equation (12). These form a spectral

series like that for the hydrogen atom[4]. The nonlinear spectrum can thus be interpreted

as offering a quantization of the original classical problem. Hence nonlinear quantization

appears as a natural result of incorporating self–interactions.

VI. CONCLUSION

My aim was to tie the Schrödinger interpretation with a nonlinear quantization founded

in self–interactions. This approach seems capable of considerable further development. For
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Ground state: First excited state:

FIG. 2: The quantized ground state, first excited state, and their self–potentials.

now, we point out that earlier work by Barut[5], on a theory of self–field electrodynamics ,

appears compatible with the scheme of interpretation adopted here. Thus it seems reason-

able to pursue a combined theory of gravity and electromagnetism as a further test of the

consistency of this viewpoint.
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