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n the general theory of the motion of fluids, there
ar¢ two doubly infinite systems of lines that have a
fundamental importance for kinematic and dynamic
studies of the motion itself. One of these systems is
that of the lines of flux, defined by the differential
equation

i dx dy _dz
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where u, v, w, are the velocity components at the point
(x) y, z) and at the instant t; the other system is the
vortical lines, defined by the differential equation
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where p, q, r are the components of the rotation at
the same point, and are defined by the well-known
equation
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A av o Jiw
dy  az’ 1

az ax '

y W _
dx  ay

h‘hese two systems of lines are not, evidently, in-
dependent of each other, even if their mutual depen-
dence is not explicit. They appear only in a very indirect
w*y in the well-known hydrodynamic theorems. We
will not speak about this question in general, but only
about two cases that can be considered as extreme
cases. The first is the case in which the lines of the

twio systems cross each other at right angles in each
|

instant of time and in each point of the space occupied
by the fluid. It is defined by the equation

pu+gqu+rw=20

which must be true for the whole duration of the
motion, throughout the whole space. This equation
has a well-known interpretation, which expresses the
necessary and sufficient condition in which the tri-
nomial

udx + vdy + wdz

always can be integrated. The class of motion of the
fluid in which this property is true is fully represented
by the formulae

do do . _ e
ax " ay dz

where wand & are two arbitrary functions of the space
and time coordinates.

On the contrary, the second case takes place when
these lines always meet at a 0 angle. In other words,
they coincide at each point in time and space. The
analytic conditions for this coincidence are

p_9q._T 1)

otherwise

qw —ro =0, ru —pw =0,pv — qu = 0 (1)
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which of these last equations, it can be said that one
of them can be derived from the other two. Can this
second case actually be verified? If not, then, with the

hypotheses,

deg _ g dg
ax ay iz

p, 4, r must be 0, which means that the vortical lines
do not exist.

We shall begin by considering a particular class of
motions, in which each molecule of fluid moves in
parallel to a fixed plane, which we suppose to be the
xy plane. In this case we have w = 0 and then

dv ou do au
p=r—r , Ppr=r=, Ip=_— = =y
dz dz dx dy

That means that equations (1,) are the following;:

A ou du du
t—-—~—~—0, u— 4+ v— =0.

ax oy iz iz

Providing that the following conditions hold

o |
:.'=—Lp, t’=—‘£, w=20, (2)
ax dy

where ¢ is a function of x, y, z, and {, subject to the

condition
L@ @]
dz | \ dx, ay

A particular manner, but sufficient for our purposes,
to solve this equation is this. Let F be an arbitrary
function of the complex binomial (x + iy) and the time
t, and let Z be another arbitrary function, which how-
ever has only real values, and of z again take the time
as t, posing

Fe? = ¢ + i, (2.)
which means that the real part is denoted with the
symbol &, and the coefficient of the imaginary unity
with . The function ¢ satisfies the condition just
found. In fact we have

2¢ = Fe? + Fie %,

where F, is the conjugate function of F, we have

25E = F e + Fe®,
X

a s . 3 ;
,—q-:' = |F' ¢% — {F} 7%,

9y
where the prime indicates finding the derivative with
respect to the binomial (x + iy). From which we results

() 3 -
dx ay

and because the second member (F', F';) by hypoth-
esis depends only upon the variables x, y and ¢, it is
clear that the derivative with respect to the variable z
is 0, which is the result which we sought.

We have, at least in the case in which motion is
parallel to a fixed plane, a class of real motions in
which what we require, that is, the coincidence of flux
and vortical lines, exists. We note that each function
¢, which we have created through the previous pro-
cess, satisfies the equation

which means that this class of motion refers to an
incompressible fluid (2). But we note that, having

do _ay dp  a

ax ay ' ay dx
the differential equations of the flux lines become
dy=0,dz=0,dt =0,

that means these lines, identical with the vortical lines,
are represented by the finite equations
¢ = const, z = const, t = const (2,)

We can make a very simple example.
Taking

F=x+iy,Z= - 2Tz
where T is some function of {, we find
Fe-z _ {x + !y)e ZrT:’

from which

¢ = x cos 2Tz + y sin 2tz

Y = — xsin 2Tz + y cos 2Tz,
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th||15 the solution is obtained
= ¢cos2lz, v =sin2Tz, w =10,

in which the required property is immediately veri-
fiable, since we find

p = —Tcos2Tz, g = —Tsin2Tz,r =0
and from which

P_1_ 1

The flux and vortical lines are straight lines,

—x sin 2Tz + y cos 2Tz = const,
| z = const, ! = const.

This particular example easily leads to another ex-
ample which also relates to an incompressible fluid,
but in which the fluid molecules no longer move more
parallel in a plane. If, in fact, we take

u = T, cos 2Ty + T, sin 2Tz,
v = T,cos 2Tz + T, sin 2Tx,
w = T, cos 2Tx + T, sin 2Ty,

where T, T,, T,, and T, are four arbitrary functions of
time, we immediately find

Zod_tow

u v w

Another class of solutions can be indicated, in which
the motion is neither parallel to the plane nor in gen-
eral relates to an incompressible fluid.

Let & be a general function of x, y, and ¢, then pose

keeping the third component w, indeterminate for the
moment. From this is derived

_ dw L e de
G Sy S g BRge Sar

The third equation (1,) will become

and that shows that w must have the form
w = w(e, z, t),
from this results

2p 29 dw

u v dg

The equality of the first two relationships (1) with
the third is thus expressed by the equation

Fo  Fo  latw)
a2 de

But, because ¢ is an independent function of w, and
because of this same equation,

& (w?)

dpdz
then w* must have the form
w? = F(g, t) + Z(z, 1),

and ¢ must satisfy the equation

Fo . Po 10 _
o’ a2

Supposing that ¢ and F depend only upon p = Vx*+17?
and from {, this equation becomes

26'(pd')" + pF' =0,
where the prime indicates the derivative with respect

to p. In these particular hypotheses, the various pre-
ceding formulae can thus be summarized:

de g i '
__:3;1' U=El (P(p‘p) +pw=0:

2p_29 _2r_ _w _ (pp)

u v w ¢ pw

If, for example, the component of the motion par-
allel to the xy plane is that which is due to a rotation
with constant angular velocity {2, around the z axis,
we can pose

¢ = ¥%QOp?

and the differential relation between ¢ and w becomes
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20 + ww' = 0,
From which making the integral

200 + w2 = Z(z, 1).

We have definitively

u=-Qy, v=Qx w=VZ-20%,

W+ v+ wt =7 - 0%,

L I Q

¢
v v w VZ — 200p?
the flux lines are given by the equations

p = const,

arctan Y. -—-*(-—IEE-——— = const
X VZ — Ziizpz !
t = const.

The motion defined by these formulae (which can be
limited to a cylindrical space) is the motion of an in-
compressible fluid, if not when Z is independent of
z: in this case, the flux lines are helical, all of which
have the same z axis. These examples are sufficient
to establish the existence of a large and interesting
class of fluid motions, which (by an obvious analogy)
can be called helical motions, and in which the flux lines
coincide at each instant, and at each point, with the
vortical lines. The necessary and sufficient conditions
to define this class of motions are equations (1) and

(1,); but another form can be used that can easily be
given for these equations. The first of the equations

(1,) is the following:

(r]u dw v du
5~ ¥~ =B,
dz dx ax  dy

it can be written, in fact as

and from this equation we can immediately pass to
the first of the following three:

w,1+1<
2 ax
w1 dw?)
r:____ "___; 4
v 3oy (4)
,__Bw lm
2 9z

where ', v’, and w' are the complete derivatives of
u, v, w; and where, for brevity, we pose

W+ v+ W =

These new equations, of which one is the consequence
of the other two, can be considered as characteristics
of each helical motion.

Now, from the well-known forms of the equations
of motion of perfect fluids, we know that if the external
forces have a potential function, the trinomial

u'dx + v'dy + w'dz

is a perfect differential, with respect to the coordi-
nates, that means that the potential function for the
accelerations exists. Having, from equations (4)

o gip e
dy dz dt dz dx ot

dw e or
ax ay ot

it is immediately recognized that the existence of such
potential functions for the accelerations cannot agree
with the hypotheses of helical motion if the quantities
p, g, r in this motion are independent of time, Fur-
thermore, if we denote with p the common value of
the three ratios (1), that means we pose

P = WU, = Mo, T = pw, (4,
and if p,, q,, r,, are indicated with three expressions

formed with p, g, r, in the same way in which these
are formed with u, v, w, we have the relationships

dp AL

2p = 2up + el e
y 0oz
dw d

20, = 2pg +Ezu '—Bfi{‘,
il }

2r =2p.r+r,—&tv-—(7Eu,
dx dyf

from which follows
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Vhen the quantities p, ¢, r and the quantities p,, 4,.
d r, are thus independent of time, the factor u can-
ot depend upon this variable, and then, conse-
ently, (4,), the components of the velocity cannot
also be functions only of the coordinates of position.
In this way, we obtain the following theorem: When
the potential of acceleration exists, then helical motion
cannot be verified if this motion is not also stationary.
eciprocally, from equation (4} it follows that for each
stationary helical motion there exists a potential of
celeration, a potential whose value is Vaw?,
If this property of helical motion is considered, tak-
ing the ordinary derivatives of equations (4,) with re-
ect to x, y, and z and summing them, and denoting
the density by e, then we have ‘ _

pe’ — p'e = O ’ ‘

then: in each stationary helical motion, the ratio between
and & remains constant for each fluid molecule, in the
hole course of the motion.

The equations (4) are not particular cases of the
gther three, which exist unconditionaliy. In fact, if to
T\e second member of the equation

\ it i) i il '
W =—+ —u+—vv+—w .
it ix ay az :

|
we add and subtract the binomial

we get the first of the following equations:

L (O 3
= — o —— + 2qw - 2D,
WSty e o
w 1 d 2) ;
v o= = — + 2ru - 2pw, !
r 2 ay ‘ : p:i,
h . dw 14 )
A A A LR

|-

from which result the equations (4), when we impose
the proportionalities (1).

From the same equation (a), adding and subtracting
to the second member the quantity s multiplied by u,
where

N
e Av  dw I '
=— 4 — +—, . .
ax  ay az ]’
|

we can also calculate the first of the following equa-
tions:

s ' J
o . o{u™) + uw) + {uw)
at = ax oy o2
av Atewy A alvw)

= + + + — 5v, 5a
at ax dy 8z (5a)

aw N o) + Az 4 e
at ax Ay 92

g
I
&

and the comparison with the preceding gets the fol-
lowing identities:
|

8(:;2 - w—z)
2 } .
auy af i
+ ) + (az) = su + 2qw — 2rv,

ax Y
| a(tr: - %)
8{::) + v T a(;:v) = sv + 2ru — 2pw,
o - %)
ion) | o) + : = sw + 2po — 2qu.

ax ay 9z

(6)

when a potential of motion ¢ exists, we have
5=A2¢,'p=q=r:0

and the preceding relationships are the well-known
Maxwell formulae.

Very similar formulae also exist in the case in which
the motion is without a potential but appears instead
in the class of helical motions.

Taken in all of its generality, the relationships in (6)
reproduce the other formulae which Maxwell calls the
electromagnetic force equations (Second Edition of the
Treatise, Vol. 11, Art. 643.) In order to establish the
agreement between equations (6) with Maxwell’s, we
must write

; o, B, v toreplace u, v, w,
211'&, 27wy, 2w to replace p, g, 1,
; 4mm to rep]ace s,

where o, B, ¥ are, according to Maxwell, the com-
ponents of magnetic force; u, v, w are those of the
specific intensity of the current, and m is the density
of the Newtonian distribution equivalent in external
action, to the magnetic polarization of the field.
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