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On the partial differential equations of mathematical physics.
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E. T. WHITTAKER in Cambridge.

81l
I ntroduction.
The object of this paper is the solution of Laplagetential equation
0V 9V oV
+ +
ox2 0y? 0272
and of the general differential equation atwemotions
0V 9V VvV L,V
+ + =Kk —,
0x2 0y? 0272 ot?2

and of other equations deed from these.

In 8 2, the general solution of the potential equation is found.

In 8 3, a number of results are deduced from this, chiefly relating to particular solu-
tions of the equation, and expansions of the general solution in terms of them.

In 8 4, the general solution of the differential equation @feynotions is gren.

In 8 5, a number of deductions from this general solutionvengincluding a theo-
rem to the effect that grsolution of this equation can be compounded from simple
uniform plane vaves, and an undulatory explanation of the propagation eftgtan.

81
The general solution of the potential equation.

:O’

We dhall first consider the equation
0V 0V 0%V
+ +
0x2 0dy2 022
which was originally gien by Laplace*).

=0,

*) Mémoire aur la theorie de I'anneau de Saturre87.
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This equation is satisfied by the potential oy arstribution of matter which at-
tracts according to the NewtonianiL,aWe dhall first obtain a general form for poten-
tial-functions, and then shall shehat this form constitutes the general solution of
Laplaces equation. >Fronthe identity

2m
1 du

-1
VIX=aZ+ (Y= b2+ (z=¢3 2714!' (z-c)+i(x—a)cosu+i(y-b)sinu’

we see that the potential atygooint (x, y, z) of a particle of massn, stuated at the
point (@, b, ¢), is

2
du

m
ZTJ (z+ix cosu +iy sinu) — (c + ia cosu + ib sinu)

which, considered as a functionxafy, z, is an &pression of the type

2

J’ f(z+ix cosu +iy sinu, u)du,

wheref denotes some function of thedverguments
z+ixcosu+iysinu and u

It follows that the potential of gmumber of particlesn; m, ..., m situated at the
points @;b;c,), (a;b,C,), (azbscy), - - -, acbycy), is an expression of the type

2

J.{ fi(z+ix cosu +iy sinu, u) + f,(z+ix cosu + iy sinu, u)

+ f(z+ix cosu +iy sinu, u) }du

or

2

J f(z+ix cosu +iy sinu, u) du,

wheref is a nev function of the tw aguments
z+ixcosu+iysinu and u.

In this way we see thélte potential of any distribution of matter whiattracts ac-
cording to the Newtonian Law can be represented by an expression of the type

2

J. f(z+ix cosu +iy sinu, u)du.
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The question ne naturally suggests itself, whether the most general solution of
Laplaces equation can be represented by apression of this typeWe dall shev
that the answer to this is in the affirnvati

For letV (X, Y, Z) be ay lution (single-valued or many-valued) of the equation

VAR VA, Y/
+ +
ox2 0dy2 022

Let (Xo, Yo, Zo) be me point at which some branch of the functit(x, y, z) is requ-
lar. Then if we write

:O,

X=X+ X, Y=Yot+VY, z2=2+Z

it follows that for all points situated within a finite domain surrounding the point
(Xo, Yo, Zo), this branch of the functiovi(x, y, z) can be expanded in an absolutely and
uniformly corvergent series of the form

V=ag+a X+bY+c,Z+a,X?+b,Y2+c,Z%+d,YZ
+e,ZX+ foXY+agX3+---.
Substituting this expansion in Laplas&juation, which can be written
0%V 0V oWV
+ +
0X2 0dY2 0Zz2

and equating to zero the coefficients of taaaus powers oK, Y, and Z, we may ob-
tain an infinite number of linear relations, namely

=0,

a,+h,+c, =0, etc.
between the constants in the expansion.

1 . -
There areé n(n—1) of these relations between tée(n +1)(n + 2) coefficients of
the terms of an degee n in the &pansion of V; so that only

h 1 0
[E (n+1)(n+2)- > n(n—1)gor (2n + 1) of the coefficients of terms of gieen in

O O
the expansion o¥ are really independent. It follows that the terms ajrden in V

must be a linear combination ofn(2 1) linearly independent particular solutions of
Laplaces equation, which are of degredn X,Y, Z.
To find these solutions, consider the expansion of the quantity

(Z +iX cosu +iY sinu)"
as a sum of sines and cosines of multipleg of the form

(Z+iX cosu+iY sinu)" = go(X,Y, Z2)+9g:(X,Y, Z) cosu
+0,(X,Y,Z)cos i+ --+g,(X,Y, Z)cosnu
+hi(X,Y,Z)snu+hy(X,Y,Z)sn2u+:--
+h,(X,Y, Z)sinnu.
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Now g (X,Y, Z) and h,(X,Y, Z) are together characterised by the fact that the high-
est power o contained in them i2"™™; moreaer g,(X,Y, Z) is an &en function
of Y, whereash,(X,Y, Z) is an ad function ofY; and hence the {2+ 1) quantities

9o(X,Y, Z), 91(X,Y, Z),...,h(X,Y, Z)

are linearly independent of each other; ang @ne clearly homogeneous polynomials
of dgyreenin X,Y, Z; and each of them satisfies Laplace&juation, since the quanti-
ty (Z +iX cosu +iY sinu)" does so.They may therefore be taken as then(21) lin-
early independent solutions of degreef Laplace$ eguation.

Now since by Fouries Theorem we hze te relations

2
1 . N,
On(X,Y,Z2) = - (Z +iX cosu +iY sinu)" cosmu dy
1)
2

1lr . " .
h,(X,Y,Z) = p (Z +iX cosu+iY sinu)" sinmu dy
0
it follows that each of theser{2 1) solutions can be expressed in the form

2

J f(Z +iX cosu +1iY sinu, u) du

and therefore gnlinear combination of theser{Z 1) solutions can be expressed in
this form. That is, the terms of grdegeen in the expansion o¥ can be expressed in
this form; and therefor¥ itself can be expressed in the form

2

J F(Z +iX cosu +iY sinu, u)du

or

2

.I F(z+ix cosu +iy sinu — zy — iXy COSU — iyg Sinu, u)du,

or

2r

J. f(z+ix cosu +iy sinu, u)du,

since thez, +ixy cosu +iy sinu can be absorbed into the second argument
Now V was taken to be ay solution of Laplaces equation, with no restriction be-
yond the assumption that some branch of it was at some
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point a regular function — an assumption which vgags tacitly made in the solution
of differential equations; and thus wevbkaihe result, thathe generl solution of
Laplaces gjuation

0oV oV Vv
+ + =0,
ox2 0dy2 022

2

\% :J f(z+ix cosu +iy sinu, u) du,

whete fis an abitrary function of the two arguments
z+ixcosu+iysinu and u

Moreover, it is dear from the proof that no generality is lost by supposingftisaa
periodic function od.

This Theorem is the three-dimensional analogue of the theorem that the general so-
lution of the equation

0’V 0%V
- 4+ — = 0
ox2  0y?2

V= f(x+iy) +g(x —ly).

§ 1L

Deductionsfrom the Theorem of § 2; Particular Solutions;
Expansions of the General Solution.

1° Interpretation of the solutionWe may gve t the general solution just ob-
tained a concrete interpretation, as follows.

Since a definite ingral can be @aded as the limit of a sum, we camaal V as
the sum of an infinite number of terms, each of the type

V, = f,(z+ix cosu, +iysinu,)

each term corresponding to some valua,of
But this term is a solution of the equation
0%V, .\ 0%V, -0
0X2 0Z?

where
X, = Xcosu, +ysinu,,
Y, = —Xsinu, +ycosu,
Z =z

so that ¥, Y Z represent coordinates dexl from (x,y,z) by a otation of the
axes through and angle round the axis ot.
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Thus we see thahe gneal solution of Laplaces equation can beagarded as the
sum of an infinite number of elementary constitu¥pisead constituent being the
solution of an equation

0%V, .\ 0%V, -0,
0X2 972

and the axesX; Y, Z;) being derved from the axesx,y, z) by a smple rotation
round the axis of.

2°. The particular solutions in terms of g@ndre functions. It is interesting to see
how the well-knavn particular solutions of Laplase&guation in terms of Lgendre
functions can be obtained as a case of the solutien @i § 2

The particular solutions in question are of the form

r"P(cos8) cosmy and r"P;'(cos8) sin mg
(n=0,1,2,--,00,m=0, 1, 2,---, n),

where (, 9, ¢) are the polar coordinates corresponding to the rectangular coordinates
(x,y, 2), and where

(-D)™sin™g d™M(sint"8)
2nn! d(cosg)mm

Now the functionP}'(cos8) can be expressed by the integral

PT(cosé) =

2

(n+mn+m=-1)---(n+1) (-1 J(cose +i sing cosy)" cosmy dy,

T

P(cosé) =

and thus we heae

2
(-1)™? J(z +IVIXZFY2) cos )"

cosmy cosmedy

(n+m@n+m-1)---(n+1)
T

r"Pp'(cos8) cosmy =

2
_ (n+m)(n+ n;;[ 1)---(n+1) (1) F(Z +iVIZF Y2 cosy)" cosm(y — @) dw
1)

2

_(n+m)(n+m=1)--(n+1)
- 2

-b
We e therefore thdahe solution f'P]'(cos8) cosmgis a numerical multiple of

F
-1)"2 | (z+ix cosu +iy sinu)" cosmu du
y

2

J(z +ix cosu + iy sinu)" cosmu du
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Similarly the solutiorr "P['(cos 8) sin mgis a numerical multiple of

2

J(z +ix cosu + iy sinu)" sinmu du

>From this it is clear thah order to express any solution

2

J f(z+ix cosu+iy sinu, u) du

of Laplaces equation, as a series of harmonic terms of the form
r"P(cos8) cosmy and r"P['(cosé)sin mg,

it is only necessary to expand the function f agdoF series with respect to thedir
argument zix cosu+iy sinu, and as a Fourier series with respect to the second ar
gument u

As an eample of this procedure, we shall suppose it required to find the potential
of a prolate spheroid in the form

2

J f(z+ix cosu +iy sinu, u) du,

and to expand this potential as a series of harmonics. Let

X2 + y? 20

a2 02
be the equation of the surface of the spheroid; and suppose that it is a homogeneous
attracting body of madd. To find its potential, we can makse of the theorem that
the potential at>@ernal points is the same as that of a rod joining the foci, of line-den-

sity?"\f&;—z)f) that is, it is

2n Vera?
du (c®-a?-¢%)d¢

8n(c2 - a2)3/2 —{ +ixcosu +iysinu

—VCT a2

or
2

B+Ve7 a2
J[(c - a —BZ)Iog# +2Vc? =% aZBDdu

8”(0 a)3/2 —762_— a2 0

where B is written foz +ix cosu +iy sinu.

1
Expanding the integrand in ascending power%ofwe havethe potential in the
form

2
3aM 0 1 c2-a?  (c®-a?)? O
] + + +- - du.
27TJ.,—|1EBDB 3bB3 57 [B® =
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Since

2
1 du _ P,(cow)

o | BT

this gwves the required expansion of the potentiaf the spheroid in Legendre func-
tions, namely the series
[l 2 _ A2 2 _ A2\2 0

1 (cc—a“)P,(cos) N (c® —a“)“Py(cow) oo

3M +
o1 Br 30503 57 5 -

This result may bex¢éended to the case of the potential of an ellipsoid with three un-
equal axes, by using a formula for the potential of an ellipsu@hdjy Laguerre*)

3. The particular solutions of Laplaceegquation whit involve Bessel functions.
We dall next sher how the well-known particular solutions of Laplasefjuation in
terms of Bessel functions can be obtained as a case of the general solution.- The par
ticular solutions in question are of the form

€], (kp) cosmp and €<?J,(kp)sin mg,

wherek andm are constants, argj p, ¢ are the cylindrical co-ordinates correspond-
ing to the rectangular co-ordinatesy, z, so hat

X = pCOSyp, Y= psSing.
Now if in the solution
€], (kp) cosmg

we replacel,(kp) by its value

T

1
Intkp) = = J cos (6 - kpsing) de,

we find after a f& simple transformations that

2

kz (_1)m/2 k(z+ix cosu+iy sinu)
e“’Jn(kp) cosmg = T ‘!’ e ysihW cosmu du
Vi

The other solutions whichvolve sn mg, can be similarly expressed: we see there-
fore thatthe solutions

e?J, (kp)cosmp and &2J.(kp)sin mg,

*) C.R., 1878.
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are numerical multiples of

2

J ek(z+ix cosu+iy sinu) cosmu du

and

2r

J ek(z+ix cosu+iy sinu) sinmu du

respectively It follows from this thatn order to express any solution

2

J f(z+ix cosu+iy sinu, u) du

of Laplaces equation as a sum of terms of the form
e?J. (kp)cosmp and &2J.(kp)sin mg,

it is only necessary to expand the function f in terms ofxpenentials of its first ar
gument zix cosu+iy sinu, and as a Fourier series with respect to its secorglar
ment u.

As an eample of the use which may be made of these results, we shall suppose it
required to express the potential-function

V =1+e%Jy(p) + €% Jp(2p) + €3 J(3p) +- - -

(wherezis supposed posi) as a sries of harmonic terms of the type&alving Leg-
endre functions: and also to find a distribution of attracting matter of which this in the
potential. Thisan be done in the following wayVe have

V =1+e%Jy(p) + €% Jo(20) +€ 3 Jy(3p) +- - -

2

— Zi J{l + e—z—ix cosu-iy sinu + e—2(z+ix cosu+iy sinu) +.. } du
T

2
1 du
“ 27 | 1 - e(z+ixcosutiysinu)

But if t be ary variable different from zero, and such that "«" 2 pi, we have

1 1 1 t t3 t°
- =——+4+_—--B,—+B,—-B —+
1-¢ t 2 t2a TPar el N A
whereB, B,, are Bernoullis rumbers. Thereforeso long az is positve and " z "+
ix “cos™u "+ iy “sin"u <" 2 pi i.e, so long agis positie and x? +y? + z2 < 4% we
have

~
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1 1 By, . _ O
— + -+ —(z+ixcosu+iysinu)+---du
2 E]z+|xcosu+|ysmu 2 2 0
or
1 1 B B, B;
V_F > ?rPl(cose)——r3P2(cose)+ A 3 15P(cos) + - -

andthis is the equired expansion of V as a series of harmonics involvirggridze
functions.

Next, since
1 1 1 = 1 1
=—+—+ — + —
l-e?z 2 z Zz+2nim z-2nim
weha/e
du Z !
1[ % z+ix cosu +iy sinu Dz+|xcosu+|ysmu+2n|n
1 (1]
+ - — — 1]
z+|xcosu+|ysmu—2n|n[Ij
or
[o/e]
0 0
V:}+ 1 1 N 1

———— A [} s————— e —————— O
2 TRV 2 G anme R Zo e
and therefore/ can be egarded as the potential due to a set of attracting masses
placed at equal imaginary interva®r along the axis of z.

§1L

. : R o VAR VAR VAR, LV,
The differential equation 5z 32 t 372 =k 5 -
We dhall next consider the general differential equation afemotions,

0V OV OV _ L0V

ox2  0y?2 9z2 o2’

wherek is a constant.
Writing kt for t, this becomes

R N R azv _ 0V
ox2  0y? 622 ot2 '’
which we shall tak for the present as the standard form of the equation.
In order to find the general solution of this equation, we iolgrocedure analo-

gous to that of 8 2LetV(X, Y, z,t) be any olution (single-valued or mgrvalued) of
the equation; and lekg, Yo, Zo, tog) be a
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place at which some branch of the functivhis regular Then if we write
X=Xo+X,¥y=yot+tY,z=2+Z,t =ty + T, it will be possible to expand this
branch of the functio as a power-series of the form

V=ag+a X+bY+c,Z+d;T+a,X2+b,Y?+c,Z2+d, T2 +e,XY
+ ,XZ+ GoXT +hYZ+KYT+1L,ZT +ag X3+ - -,
which will be absolutely and uniformly ceergent for a certain finite domain ok

ues ofX,Y, Z, T. Substituting this expansion in the differential equation, which may
be written

R .\ 0%V .\ 0V _ oV
X2  aY2 9z2 9T2’

and equating to zero the coefficients afigus powers oK,Y and Z, we dbtain an
infinite number of linear relations, namely

ay + b2 + Cr = d2’ etc.,
. : 1
between the constants in thepansion. Therare G (n=-1)n(n+1) of these rela-

1
tions between th% (n+1) (n+2)(n+3) coefficients of terms of grdegeen in the
expansion ofV; so hat only

LN+ (M +2) (1+3)-(1- Dn(n+ 1)

or
(n+1y

of the codiicients of terms of dgeen in the expansion o¥ are really independent.
It follows that the terms of deeen in V must be a linear combination of  1)? lin-
early independent particular solutions of degree X,Y,Z, T.

To find these solutions, consider the expansion of the quantity

(X sinucosv+Y sinusinv+ Zcosu+T)".
If we first tale the expansion in the form

Jo+ Q1 COSV+Q,COS &/ +---+(,COSNV,
+h;sinv+h,sin2/+---+h,sinny,

we hae en in 8 2 thayy, 91, -+, dn, e, - - -, h,, ae linearly independent functions
of X,Y,Z, andT. Moreover, g,, andh,, are of the form sifiu x a polynomial of de-
gree (i1—m) in cosu, and therefore each of them contaims—(m+ 1) independent
polynomials inX,Y,Z,T. Thus the total number of independent polynomials in
X,Y,Z, T, inthe expansion of

(X sinucosv+Y sinusinv+ Zcosu+T)"



On the differential equations of physics. 345

in sines and cosines of multipleswéndy, is

(n+1)+2n+2(n-1)+2(n-2)+---+2
or
(n+1)>%

Now each of these polynomials must satisfy the equation
02V .\ 0%V .\ 0V _ oV
0x2  9y2 92  ot2’

since the quantity
(X sinucosv+Y sinusinv+Zcosu+T)"

does so: and therefore jhemay be taken as the ¢ 1)? linearly independent solutions
of the equation

0%V .\ RY .\ 0V 9%V

0x2  dy2 0z22 o2’
which are homogeneous ofgteen in X,Y,Z, T. Now by Fourier's theorem we
have

2

1 ) . .
Om = — J(X sinucosv +Y sinusinv + Z cosu + T)" cosmv dy
T

and sinceay,, is of the form

n-m
Z u, sin™ucos u,
r=0

whereu, is one of the polynomials in question, it is clear tatcan be expressed as
a um of sines or cosines of multipleswgfaccording asnis even or add; and the co-
efficient of one of these sines or cosines, say o$@as

T

2
- J Jm COssu du
JT

It follows that each of the polynomialls can be expressed in the form

s

J'gmf(wdu,

where f (u) denotes some periodic function of that is, it can beg@ressed in the
form

2mr

JJ-(X sinucosv+Y sinusinv+Z cosu+T)" f (u) cosmv dudv.
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It follows from this that each of thea ¢ 1)? polynomial solution of dgreen can be
expressed in the form

2m

J’J.(X sinucosv +Y sinusinv+ Zcosu+T)" f(u, V) du dy,

where f (u, v) denotes some periodic function efandv; and therefore the terms of
degreenin V can be expressed in this form.
The functionV itself can therefore be expressed in the form

2m

J.J. f(Xsinucosv+Ysinusinv+ Zcosu+T,u,Vv)dudy

wheref denotes some function of the three arguments
Xsinucosv+Ysinusinv+ Zcosu+T, u, andv;

andf may without loss of generality be supposed to be periodi@airdyv.
Now

Xsinucosv+Y sinusinv+Zcosu+T
= (xsinucosv +ysinusinv+ zcosu +t)

— (Xp Sinucosv + yy sinusinv + z; cosu + ty);
and the termo
(Xg Sinucosv + yg sinusiny + z; cosu +t)

can be absorbed into thegamentsu andv; moreover V was taken to be ay solution
L : : .t
of the partial differential equation; we V& therefore, on ertlngE for t, the result
thatthe general solution of the partial differential equation of wave-motions,
0V 9V VvV _ ,0NV
+ + =Kk —,
ox2 0y? 0272 ot?

2

. . . t
V= J-J- f (xsinucosv + ysinusinv + zcosu + P ,U,v) du dv,
whete f is an abitrary function of the three arguments

. : . t
Xsinucosv+ysinusinv+ ZCOSU+E ,uand v.
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81
Deductions from the general solution of § 4.

1°. The analysis of wave-motiongVe dhall nov deduce from the general solution
thus obtained a result relating the analysis of those phenomena which are represented
by solutions of the equation

VAR VAR VAR, LV
+ + =k —.
ox2 0y? 0272 ot?

If we revert to the fundamental idea of the definite grid as the limit of a sum of an
infinite number of terms, we see that the general solution

2mr

. . . t
V = JJ f(xsinucosv+ysinusinv+ zcosu+E ,U,Vv)du dy

can be interpreted as meaning tWas the sum of an infinite number of terms of the
type

: . : t
f(xsinucosv+ysinusinv+zcosu+ K u, v),

there being one of these terms correspondingéxy elirection in space gen by the
direction-cosines

sinucosv, Inusinv, cosu.

The solutionV can therefore be gerded as the sum of constituent solutions, each of
the type
. . . t
F(xsinucosv+ysinusinv+zcosu + E)

where the functiof varies from one directionu( v) to another.
Now let us fix our attention on one of these constituent soluttonl for some
range of values of the quantity

. , . t
X SInucosv + yS|nusmv+zcosu+E )

the functionF is finite and continuous, we can for this range atigs &pressF by
Fourier’s integral formula in the form

00 b

1 t
I—TJ dA !- F(a)cos{A (xsinucosv+ysinusinv+ zcosu+E)—)l a} dAda,

wherea andb are the terminals of this range dlwes; or supposing the igtation
with respect tar to be performed,

[¢e]

t
J. g(A)sr{ A(x sinucosv +ysinusinv+zcosu + E)} da,

whereg(A) denotes some function at
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Now let us again et to the idea of the definite integral as the limit of a sum.
Then this latter integral can begeeded as the sum of an infinite number of terms of
the type

. . ) t
s{ A (xsinucosv+ysinusinv+zcosu + E)}’

each term being multiplied by some factor depending.on

The solutionV can therefore be garded as constituted by the superpostion of
terms of this last typeBut a term of this type representssimple uniform plane
wave for on transforming the axes so that thev rais of x is the line whose direc-
tion-cosines are

sinucosv, Inusinv, cosu,
the term becomes
t
sm A(X+ E)'

which represents a simple planawgwhose direction of propagjon is the n& axis
of x. We se therfore thathe geneal finite solution of the diérential equation of
wave-motions
0V 9V VvV L,V
+ + =k
ox2 0y? 0272 ot?
can be analysed into simple plane waves, represented by terms of the type

. . . t
F(A,u, V)i A (Xxsinucosv+ysinusinv+zcosu + E)}'

It is interesting to obseevthat Dr Johnstone Stonein 1897*) shewed by pysical
reasoning, and without gmeference to the equation

VAR o VAR VAR Y,
+ + =k*—.
ox2 0dy2 022 ot2

that all the disturbance of the luminiferous ether arising from sources of certain kinds
can be resolved into trains of planawss.
2°. Solution of the equation
0%V oV 9V
+ +
ox2 0dy2 022
If a solutionW of the equation
0*W .\ 0*W .\ 0°W _ 9°W
0x2  9y2  9z2  ot2
be of the formVe!, whereV is a function ofx, y, z only, which does not iplve t,
thenV clearly satisfies the equation
0V 9V oV
+ +
0x2 0y? 022

+V =0.

+V =0,

*) Philosoph. MagazingV) XLIII.
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and therefore, on reference to the general solution of #lvenvotion equation found
in 8 4, we see thdhe general solution of the equation

2V .\ 2V .\ %V

ox2 0y2 072 *v=0

2m

V = .J-.J' ei(x sinu cosv+y sinusinv+z cosu) f (U V) du dv

3. Deduction of the known particular solutions of the equation
VAR VARV

+ +
ox2 0y2 072
It is known that particular solutions of the equation
oV 9V 9V

+ +
ox2 0y2 072

exist, which are of the form

+V =0.

+V =0

1
V=r2] +1(r)P2“(c;os€)§i?,S me
n —_
2

(n2011121: mzoilizll"ln)1

wherer, 8, ¢ are the polar coordinates correspondingtyg, z. We dhall nov shew
how these may be demd from the general solution of the equation which has just
been found.

For let the general soution be written in the form

2r

V = JJ ei(xsinucosv+ysinusinv+zcosu) f (U V) sinu du dv

where f (u, v) is an abitrary function of the tw algumentsu andv, which may with-
out loss of generality be taken to be periodia andv.
Now let the functionf (u, v) be xpanded in surface-harmonicswéndyv, so hat

2r

V = 21[1[ ei(xsinucosv+ysinusinv+zcosu)Yn(u’ V) sinudu d/
n=0

whereY,, is a surface-harmonic of ordeyi.e., if

& = psinucosv, n = psinusinv, ¢ = pcosu,
are rgaded as the co-ordinates of a point in space, #&hQ(u, v) is a lomogeneous
polynomial of degreain &, n, ¢, satisfying Laplaces equation

%V .\ oV .\ oV

= 0.
0e2 a2 0¢2




350 E. T. WHITTAKER

Next, let the variables be changed by the substitution

COSU =C0S# COSw + Sind sinw cosV',
sinusin (- V) =sinwsinV',
sinucos @ - V) =sinwsing — sinw CosV' Cosé,

so that psinwcosV', psinwsinV', p cosw) are the co-ordinates of the poird, §, ¢)

referred to ne/ axes, the line whose direction-cosines are
(sing cosg, 9n 8 sing, cosh) being taken as the neaxis of z
Thus

2m
o0
V= ZJJe‘f 0wy (1, v) sin o dew V.
n=0

But a surface-harmonic of yrorder n remains a suaice-harmonic of ordem under
ary transformation of axes in which the origin is unchanged: and theréf@sev) is

a wrface harmonic of orderin w andv; and consequently it can be expanded in the
form

An(8, 9)P,(cosw) + AL(8, ) Pi(cosw) cosv' + AZ(8, ¢)P3(cosw) cos &/
+- -+ AN(8, p)Pp(cosw) cosnV
+B,(0, p)P,(cosw) SNV +- - -+ B1(8, p) P (cosw) sin nV,

where A,(8, ¢),- -, B](8, ¢) are functions ofgd and ¢. Substituting this value for
Y,(u, V) in the integral, and performing the integration with respeut,tae have

T

(00]
V=2 A0, 9 [ &P, (cosw)sinwdw:
n=0

and in virtue of the relation*)

" Li"3 1)
. w . T = +—
Je‘f %P, (cosw) it = (5)2 —— £

this can be written in the form

V=2 ) (n)(6,9)
0 2

where f,,(8, ¢) denotes some function éfandg.

*) A proof of this and seeral related results will be found in a paper shortly to be published
by the author.
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Since the sudce-harmonic¥,, (8, ¢) were independent of each othtiie functions
(8, ¢), will be indpendent of each other and therefore each of the quantities

r2) 1) Fa(6, )
2

will be a solution of the equation
vV 9V 9V
+ +
ox2 0y2 072

But on transforming this equation to polar co-ordinates, and substitutinggrese
sion

+V =0.

23 10160, 9)
2

for V, we find that the functionf,(@, ¢) must satisfy the diérential equation for a
surface-harmonic ir® and ¢ of ordern. It follows that f,(8, ¢) can be expanded in
the form

f.(8, @) = A,Pn(cosd) + Al cospPL(cose) +- - -+ A, cosngPl(cose)
+ Bl sinpP?(cost) + - - -+ BR sinngP(cosb),
and thughe particular solutions
23 1(r)Py(cosg)gy my
2

are dbtained.
Moreover, it is dear from the abee poof thatin order to expand any solution

2m

V = JJ ei(xsinu COSV+Y sinusinv+z cosu) f(u V) sinu du dv

of the equation
vV 9V
+ +

0x2 0dy2 022 *v=0

as a series of the form
00
2 123 1 (1)Ya(6.9)
n=0 n+§
whee Y, is a surface-harmonic of order n thand ¢, it is only necessary taxpand
the function f{u, v) in surface-harmonics of u and v.
4°. Expression of the solution of the equation
vV 9V 9V
+ +
ox2 0dy2 022
as a series of generalised Bessel functions.

+V =0
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Another analysis of the solutions of the equation
o0V 9V 9V

+ +
ox2 0y2 072

entirely different from that gen in 3, can be found in the following way.
Consider the expression

+V =0,

ea X5 QDY - 3t

if this expression be garded as a function (fandt, it can for finite non-zeroalues
of sandt be expanded as a series of (pusitnd n@dive) integral powers ot andt,
the coefficients in this series being functionxpy andz. Let the coefficient of the
term ins™t" be denoted by, ,(X, ¥, 2): so that we ha the relation

00 (o8]

1 1., 1 i 1 1 i 1
e I PE I AT = H S g (%, Y, DS,

m=-o00 h=—o00
This equation can begaded as a generalisation of the equation

11 0

eéz(t—f)= Z J.(Dt",

N=—-o00

which defines the ordinary Bessel functions; and we shall consequently call the func-
tions Jn (X, Y, 2) generalised Bessel functions

We row proceed to establish some properties of the functigngx, y, 2); it will
be seen that tlyeare very similar to those of the ordinary Bessel functions.

In the first place, since the expression

V = e et~ g¥e ) (s )

satisfies the equation
vV 9V 9V
+ +
0x2 0y? 022
it follows thatead of the functions J (X, Y, z) satisfies the equation
VAR VAR o/
+ +
0x2 0y? 022

In the second place, we shall obtain &pression ford,, (X, Y, z) as a @finite inte-
gral. ByLaurents theorem, we kne that the coefficient 6™ in the expansion of

+V =0,

+V =0.

e S DGV D)5 or)
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1 I S L P s D 5 )
2m

whereC is ary simple contour in the-plane surrounding the origin; and again apply-
ing Laurents theorem, the coefficient of in this expression is seen to be

1 1., 1 i 1. 1 i 1
4_12 J’ !’ LX) =YD+ 52 g
T

whereD is ary smple contour in thé-plane surrounding the origin.
Now write s =€, t = €Y. Thuswe have the result

2m 2

1 o S
Jm,n(xa y,2) = EJ’J @ Miu-niv+ixsinucosv+y sinusinv+izcosu y, | dv

which may be egarded as the analogue of Bessaetitegral

us

1
3.(2) = I—TIcos fu— zsinu) du.

The functionsl, ,(X, Y, 2) likewise possess an additiontheorm: for weeha

01 (Pt ) = (D)(s= =)+ 5 @5+

1 1 1 i 1 1 i 1
*X(S‘g)(“’f) - ZY(S‘E)('[‘*) *5 Z(5+g)

—es t
1 1 1 i 1 1 i 1
xeza(s_g)(t"'?) - Z,b(s_g)(t'f) + EC(S+§)

and so
Z Jnn(X+a,y+b,z+c)s"t"
m,n

= Z Jmn(X, Yy, 2)s™t" x Z Jmn(a b, c)smt",
m,n m,n

Equating coefficients on both sides of this equatimnhave the result

00 00

Ima(X+2,y+5,2+0) = 2 2 3pq(X, ¥, DI png(@ b,0),

p=—00 g=-00
which is the addition-theorem foremerlised Bessel functionand is the analogue of
the well-known result

00

3(z+0) = 2 3p(DInp(©).

p=-co
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We dhall nov shew how the generalised Bessel functions furnish an analysis of the
general solution of the equation
o0V 9V 9V
+ +
ox2 0y?2 072
For the general solution is, by,2

+V =0.

m 2T

V = J'J- ei(x,'~‘,inucos,v+ysinusinv+zcosu) f (U V) du dv

where f (u, v) can without loss of generality be taken to be a periodic functian of
andv.

Now let the functionf (u, v) be xpanded by the extended form ajufier’'s theo-
rem, in the form

00 00
f(U,V): z z am,neimu+inv.

M=—00 N=—o00
Then we hae

mo2m
00 00

V = Z z am,n-[-[ ei(xsinucosv+ysinusinv+zcosu+mu+nv) du dv
- 00

m=—oo0 N=

Comparing this with the form just found for the generalised Bessel functions, we see
thatthe general solution of the equation

2V .\ 2V .\ oV

ox2  0y? 90z72 *V=0

can be written

V= Z z amnImn(X Y, 2),

m=—o00 N=—o00

where the quantitiea,, , are arbitrary constants. This furnishes an altereatialy-
sis of the solution to that\gn in 2.

5°. Gravitation and Electrostatic Attractionxplained as modes of axe-distur-
bance.

The result of 9, namely that ay solution of the equation

0V 9V VvV _ L,V
+ + =k
0x2 0y2 0z ot2
can be analysed into simple planaveas, throws a n& light on the nature of those
forces, such as graation and electrostatic attraction, which vary as therge

square of the distancéor if a system of forces of this character be considered, their
potential (or their component inyagiven direction) satisfies the equation
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Vv .\ oV .\ oV

ox2  0y?2 072 =0.
and therefore fortiori it satisfies the equation
0oV 9V VvV L,V
+ + =k

0x2 0y? 0272 ot?

wherek is ary constant. Itfollows from 2 that this potential (or force-component)
can be analysed into simple planavas in various directions, eachawvebeing prop-
acated with constantelocity. These vaves interfere with each other in such aw
that, when the action has once been set up, the disturbangepairdardoes not ary
with the time, and depends only on the coordinateg, £) of the point.

It is not difficult to construct, syntheticallgystems of coestent simple \aves,
having the property that the total disturbance at pmint (due to the sum of all the
waves) varies from point to point, but does not vary with the tiddsimple example
of such a system in the following.

Suppose that a particle is emtting sphericaVas, such that the disturbance at a
distancer from the origin, at time, due to those aves whose vavelength lies be-

21T
tween— and
U U+

, IS represented by

2d u sin (uVt — ur)
U r

whereV is the velocity of propamion of the vaves. Thenafter the vaves have
reached the point, so hat {/t —r) is positive, the total disturbance at the point (due
to the sum of all the awves) is

00

_J’ 2d u sin (uVt — ur)

U r

Take uVt — ur =y, wherey is a nev variable. Thenhis disturbance is

_‘!'smyOI
Jsmyd

r

The total disturbance at any point, due to this system of waves, efothandepen-
dent of the timeand is eerywhee proportional to the gravitational potential due to
the patrticle at the point.

or, Ince

itis
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It is clear from the foregoing that the field of force due to a gravitating body can be
analysed, by a spectrum analysis" as it were, into an infinite number of constituent
fields; and although the whole field of force does not vary with the timeagetof
the constituent fields is of an undulatohatacter consisting of a simple wave-dis-
turbance popagated with uniform velocityThis analysis of the field into constituent

1
fields can most easily be accomplished by analysing the pot?mfaéach attracting
particle into terms of the type

sin (uVt — ur)
r

as in the example alreadygn. To each of these terms will correspond one of the
constituent fields.In each of these constituent fields the potential will be constant
along each wavefront, and consequently the gravitational force in each constituent
field will be perpendicular to theavefront, i.e. the waves will be longitudinal

But these results assimilate the pragdamn of gravity to that of light: for the undu-
latory phenomena just described, in which the varying vector is a gravitational force
perpendicular to the avefront, may be compared with the undulatory phenomena
made familiar by the electromagnetic theory of light, in which the varyeojovs
consist of electric and magnetic forces parallel to theedront. Thewaves ae in
other respects exactly simiJand it seems probable that an identical property of the
medium ensures their transmission through space.

This undulatory theory of gravity would require that gravity should be propaged
with a finite \elocity, which havever need not be the same as that of light, and may
be enormously greater.

Of course, this ivestigation does not explain theauseof gravity; all that is done
is to she&v that in order to account for the propagation across space of forces which
vary as the imerse square of the distance, wedanly to suppose that the medium is
capable of transmitting, with a definite though larg®eity, sSmple periodic undula-
tory disturbances, similar to those whose prapiag by the medium constitutes, ac-
cording to the electromagnetic theatye transmission of light.




